From af98eb25206dad554496bf0d45a7e83c2a6b3793 Mon Sep 17 00:00:00 2001 From: "Jiri (George) Lebl" Date: Tue, 8 Jun 2021 12:23:14 -0700 Subject: [PATCH] Fix overfull box --- ch-one-dim-ints-sv.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ch-one-dim-ints-sv.tex b/ch-one-dim-ints-sv.tex index a15cd47..04381b5 100644 --- a/ch-one-dim-ints-sv.tex +++ b/ch-one-dim-ints-sv.tex @@ -1613,9 +1613,9 @@ \subsection{Path independent integrals} sufficient for a star-shaped $U$. \begin{proof} -Suppose $U$ is star-shaped with respect to $p=(p_1,p_2,\ldots,p_n) \in U$. +Suppose $U$ is a star-shaped domain with respect to $p=(p_1,p_2,\ldots,p_n) \in U$. Given $x = (x_1,x_2,\ldots,x_n) \in U$, define the path $\gamma \colon [0,1] \to U$ as -$\gamma(t) := (1-t)p + tx$, so $\gamma^{\:\prime}(t) = x-p$. Then let +$\gamma(t) := (1-t)p + tx$, so $\gamma^{\:\prime}(t) = x-p$. Let \begin{equation*} f(x) := \int_{\gamma} \omega =