-
Notifications
You must be signed in to change notification settings - Fork 26
/
ch-real-nums.tex
2182 lines (1933 loc) · 74.3 KB
/
ch-real-nums.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Real Numbers} \label{rn:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Basic properties} \label{sec:basicpropsrn}
\sectionnotes{1.5 lectures}
In analysis, the main object we work with is the set of
\myindex{real numbers}. As this set is so fundamental, often much time is
spent formally constructing the set of real numbers. However, we
take an easier approach, and we will assume that a set with the correct
properties exists.
The three key properties of the real numbers is that it is
an ordered set, it is complete with respect to this order,
and it is a field compatible with this order.
We start with order.
\begin{defn}
An \emph{\myindex{ordered set}} is a set $S$ together with
a relation $<$ such that
%\begin{enumerate}[(i),itemsep=0.5\itemsep,parsep=0.5\parsep,topsep=0.5\topsep,partopsep=0.5\partopsep]
%\begin{enumerate}[(i),nolistsep]
\begin{enumerate}[(i)]
\item \emph{(\myindex{trichotomy})} For all $x, y \in S$, exactly one of
$x < y$, $x=y$, or $y < x$ holds.
\item \emph{(transitivity)} If $x,y,z \in S$ are such that $x < y$ and $y
< z$, then $x < z$.
\end{enumerate}
We write $x \leq y$ if $x < y$ or $x=y$. We define
$>$ and $\geq$ in the obvious way.
\glsadd{not:ordereq}
\glsadd{not:orderlt}
\glsadd{not:orderleq}
\glsadd{not:ordergt}
\glsadd{not:ordergeq}
\end{defn}
The set of rational numbers $\Q$ is an ordered set: We say
$x < y$ if and only if $y-x$ is a positive rational number, that is,
if $y-x = \nicefrac{p}{q}$ where $p,q \in \N$. Similarly,
$\N$ and $\Z$ are also ordered sets.
There are other ordered sets than sets of numbers. For example, the
set of countries can be ordered by landmass, so India $>$
Lichtenstein.
A typical ordered set that you have used since primary school is the
dictionary. It is the ordered set of words where the order is the
so-called lexicographic ordering. Such ordered sets often appear, for
example, in
computer science. In this book, we will mostly be interested in ordered
sets of numbers.
\begin{defn}
Let $E \subset S$, where $S$ is an ordered set.
%\begin{enumerate}[(i),itemsep=0.5\itemsep,parsep=0.5\parsep,topsep=0.5\topsep,partopsep=0.5\partopsep]
%\begin{enumerate}[(i),nolistsep]
\begin{enumerate}[(i)]
\item If there exists a $b \in S$ such that $x \leq b$ for all $x \in E$,
then we say $E$ is \emph{\myindex{bounded above}} and $b$
is an \emph{\myindex{upper bound}} of $E$.
\item If there exists a $b \in S$ such that $x \geq b$ for all $x \in E$,
then we say $E$ is \emph{\myindex{bounded below}} and $b$
is a \emph{\myindex{lower bound}} of $E$.
\item If there exists an upper bound $b_0$ of $E$ such that
$b_0 \leq b$ for all upper bounds $b$ of $E$, then
$b_0$ is called the \emph{\myindex{least upper bound}} or
the \emph{\myindex{supremum}}
of $E$. See \figureref{fig:lub}. We write\glsadd{not:sup}
\begin{equation*}
\sup\, E \coloneqq b_0 .
\end{equation*}
\item Similarly, if there exists a lower bound $b_0$ of $E$ such that
$b_0 \geq b$ for all lower bounds $b$ of $E$, then
$b_0$ is called the \emph{\myindex{greatest lower bound}} or
the \emph{\myindex{infimum}}
of $E$. We write\glsadd{not:inf}
\begin{equation*}
\inf\, E \coloneqq b_0 .
\end{equation*}
\end{enumerate}
When a set $E$ is both bounded above and bounded below, we say simply that
$E$ is \emph{bounded}\index{bounded set}.
\end{defn}
The notation $\sup E$ and $\inf E$ is justified as
the
supremum (or infimum) is unique (if it exists): If $b$ and
$b'$ are suprema of $E$, then $b \leq b'$ and $b' \leq b$, because both
$b$ and $b'$ are the least upper bounds, so $b=b'$.
\begin{myfigureht}
\subimport*{figures/}{lub.pdf_t}
\caption{A set $E$ bounded above and the least upper bound of $E$.\label{fig:lub}}
\end{myfigureht}
A simple example:
Let $S \coloneqq \{ a, b, c, d, e \}$ be ordered as $a < b < c < d < e$, and
let $E \coloneqq \{ a, c \}$. Then $c$, $d$, and $e$ are upper bounds of $E$, and
$c$ is the least upper bound or supremum of $E$.
A supremum or infimum for $E$ (even if it exists) need not be
in $E$. The set $E \coloneqq \{ x \in \Q : x < 1 \}$ has a least upper
bound of 1, but 1 is not in the set $E$ itself.
The set
$G \coloneqq \{ x \in \Q : x \leq 1 \}$ also has an upper bound of 1,
and in this case $1 \in G$.
The set $P \coloneqq \{ x \in \Q : x \geq 0 \}$ has no upper bound (why?) and therefore
cannot have a least upper bound. The set $P$ does have a greatest lower
bound:~0.
\begin{defn} \label{defn:lub}
An ordered set $S$ has the \emph{\myindex{least-upper-bound property}} if
every nonempty
subset $E \subset S$ that is bounded above has a least upper bound,
that is, $\sup\, E$ exists in $S$.
\end{defn}
The \emph{least-upper-bound property}
is sometimes called the \emph{\myindex{completeness property}} or the
\emph{\myindex{Dedekind completeness property}}%
\footnote{%
Named after the German mathematician
\href{https://en.wikipedia.org/wiki/Richard_Dedekind}{Julius Wilhelm Richard Dedekind}
(1831--1916).}.
The real numbers have this property.
\begin{example}
The set $\Q$ of rational numbers does not have the least-upper-bound property. The subset
$\{ x \in \Q : x^2 < 2 \}$ does not have a supremum in $\Q$. We will
see later (\exampleref{example:sqrt2}) that the supremum is
$\sqrt{2}$, which is not rational%
\footnote{This is true for all other roots of 2, and interestingly,
the fact that $\sqrt[k]{2}$ is never rational for $k > 1$ implies no piano can
ever be perfectly tuned in all keys. See, for example:
\url{https://youtu.be/1Hqm0dYKUx4}.}.
Suppose $x \in \Q$ such that $x^2 = 2$.
Write $x=\nicefrac{m}{n}$ in lowest terms. So ${(\nicefrac{m}{n})}^2 = 2$
or
$m^2 = 2n^2$. Hence, $m^2$ is divisible by 2, and so $m$ is divisible by
2. Write $m = 2k$ and so ${(2k)}^2 = 2n^2$. Divide by 2
and note that $2k^2 = n^2$, and hence $n$ is divisible by 2. But that is a
contradiction as $\nicefrac{m}{n}$ is in lowest terms.
\end{example}
That $\Q$ does not have the least-upper-bound property is one of the most
important reasons we work with $\R$ in analysis. The set $\Q$
is just fine for algebraists. But us analysts require the least-upper-bound
property to do any work.
We also require our real numbers to have many algebraic properties.
In particular, we require that they be a field.
%\enlargethispage{\baselineskip}
\begin{defn}
A set $F$ is called a \emph{\myindex{field}} if it has two operations
defined on it, addition $x+y$ and multiplication $xy$, and if it satisfies
the following axioms\index{axiom}:
%mbxSTARTIGNORE
\begin{enumerate}[({A}1)]
%mbxENDIGNORE
%mbxCLOSEPARAGRAPH
%mbx <dl>
\item
%mbx <title>(A1)</title>
If $x \in F$ and $y \in F$, then $x+y \in F$.
\item
%mbx <title>(A2)</title>
\emph{(commutativity of addition)}
$x+y = y+x$ for all $x,y \in F$.
\item
%mbx <title>(A3)</title>
\emph{(associativity of addition)}
$(x+y)+z = x+(y+z)$ for all $x,y,z \in F$.
\item
%mbx <title>(A4)</title>
There exists an element $0 \in F$ such that
$0+x = x$ for all $x \in F$.
\item
%mbx <title>(A5)</title>
For every element $x\in F$, there exists an element $-x \in F$
such that $x + (-x) = 0$.
%mbxCLOSEITEM
%mbx </dl>
%mbxSTARTIGNORE
\end{enumerate}
\begin{enumerate}[({M}1)]
%mbxENDIGNORE
%mbx <dl>
\item
%mbx <title>(M1)</title>
If $x \in F$ and $y \in F$, then $xy \in F$.
\item
%mbx <title>(M2)</title>
\emph{(commutativity of multiplication)}
$xy = yx$ for all $x,y \in F$.
\item
%mbx <title>(M3)</title>
\emph{(associativity of multiplication)}
$(xy)z = x(yz)$ for all $x,y,z \in F$.
\item
%mbx <title>(M4)</title>
There exists an element $1 \in F$ (and $1 \not= 0$) such that
$1x = x$ for all $x \in F$.
\item
%mbx <title>(M5)</title>
For every $x\in F$ such that $x \not= 0$ there exists an element
$\nicefrac{1}{x} \in F$
such that $x(\nicefrac{1}{x}) = 1$.
%\end{enumerate}
%\begin{enumerate}
%mbxSTARTIGNORE
\item[(D)]
%mbxENDIGNORE
%mbxlatex \item
%mbx <title>(D)</title>
\emph{(distributive law)} $x(y+z) = xy+xz$
for all $x,y,z \in F$.
%mbxSTARTIGNORE
\end{enumerate}
%mbxENDIGNORE
%mbxCLOSEITEM
%mbx </dl>
\end{defn}
\begin{example}
The set $\Q$ of rational numbers is a field. On the other hand $\Z$ is not a
field, as it does not contain multiplicative inverses. For example,
there is no $x \in \Z$ such that $2x = 1$, so (M5) is not satisfied. You
can check that (M5) is the only property that fails\footnote{An algebraist would say that $\Z$ is an ordered
ring, or perhaps a commutative ordered ring.}.
\end{example}
We will assume the basic facts about fields that are easily
proved from the axioms. For example, $0x = 0$ is easily proved
by noting that $xx = (0+x)x = 0x+xx$, using (A4), (D)\@, and (M2). Then
using (A5) on $xx$, along with (A2), (A3), and (A4), we obtain $0 = 0x$.
\begin{defn}
A field $F$ is said to be an \emph{\myindex{ordered field}} if
$F$ is also an ordered set such that
\begin{enumerate}[(i)]
\item \label{defn:ordfield:i} For $x,y,z \in F$, $x < y$ implies $x+z <
y+z$.
\item \label{defn:ordfield:ii} For $x,y \in F$, $x > 0$ and $y > 0$
implies $xy > 0$.
\end{enumerate}
If $x > 0$, we say $x$ is \emph{\myindex{positive}}.
If $x < 0$, we say $x$ is \emph{\myindex{negative}}.
We also say $x$ is \emph{\myindex{nonnegative}} if $x \geq 0$,
and $x$ is \emph{\myindex{nonpositive}} if $x \leq 0$.
\end{defn}
The rational numbers $\Q$ with the standard ordering is an ordered field.
We leave the details to the interested reader.
\begin{prop} \label{prop:bordfield}
Let $F$ be an ordered field and $x,y,z,w \in F$. Then
\begin{enumerate}[(i)]
\item \label{prop:bordfield:i} If $x > 0$, then $-x < 0$ (and vice versa).
\item \label{prop:bordfield:ii} If $x > 0$ and $y < z$, then $xy < xz$.
\item \label{prop:bordfield:iii} If $x < 0$ and $y < z$, then $xy > xz$.
\item \label{prop:bordfield:iv} If $x \not= 0$, then $x^2 > 0$.
\item \label{prop:bordfield:v} If $0 < x < y$, then $0 < \nicefrac{1}{y} < \nicefrac{1}{x}$.
\item \label{prop:bordfield:vi} If $0 < x < y$, then $x^2 < y^2$.
\item \label{prop:bordfield:vii} If $x \leq y$ and $z \leq w$, then $x + z \leq y + w$.
\end{enumerate}
\end{prop}
Note that \ref{prop:bordfield:iv} implies, in particular, that $1 > 0$.
\begin{proof}
Let us prove \ref{prop:bordfield:i}. The inequality $x > 0$ implies by item
\ref{defn:ordfield:i} of the definition of ordered fields that
$x + (-x) > 0 + (-x)$. Apply the algebraic properties of fields to
obtain $0 > -x$. The \myquote{vice versa} follows by a similar calculation.
For \ref{prop:bordfield:ii}, note that $y < z$ implies
$0 < z - y$ by
item \ref{defn:ordfield:i} of the definition of ordered fields.
Apply item
\ref{defn:ordfield:ii} of the definition of ordered fields to obtain
$0 < x(z-y)$. By algebraic properties, $0 < xz - xy$.
Again by item
\ref{defn:ordfield:i} of the definition, $xy < xz$.
Part \ref{prop:bordfield:iii} is left as an exercise.
To prove part \ref{prop:bordfield:iv}, first suppose $x > 0$.
By item \ref{defn:ordfield:ii} of the definition of ordered fields,
$x^2 > 0$ (use $y=x$). If $x < 0$, we use
part \ref{prop:bordfield:iii} of this proposition, where we plug in $y=x$ and
$z=0$.
To prove part \ref{prop:bordfield:v}, notice that
$\nicefrac{1}{x}$ cannot be equal to zero (why?).
Suppose $\nicefrac{1}{x} < 0$,
then $\nicefrac{-1}{x} > 0$ by \ref{prop:bordfield:i}.
Apply part \ref{defn:ordfield:ii} of the definition (as $x > 0$) to obtain
$x(\nicefrac{-1}{x}) > 0$ or $-1 > 0$, which contradicts $1 > 0$ by using part
\ref{prop:bordfield:i} again. Hence $\nicefrac{1}{x} > 0$.
Similarly, $\nicefrac{1}{y} > 0$. Thus $(\nicefrac{1}{x})(\nicefrac{1}{y}) > 0$
by definition of ordered field, and by part \ref{prop:bordfield:ii},
\begin{equation*}
(\nicefrac{1}{x})(\nicefrac{1}{y})x < (\nicefrac{1}{x})(\nicefrac{1}{y})y .
\end{equation*}
By algebraic properties, $\nicefrac{1}{y} < \nicefrac{1}{x}$.
Parts \ref{prop:bordfield:vi} and \ref{prop:bordfield:vii} are left as
exercises.
\end{proof}
The product of two positive numbers (elements of an ordered field) is positive
(follows by setting $y=0$ in \ref{prop:bordfield:ii}).
However, it is not true that if the product is positive, then each of the two
factors must be positive. For instance, $(-1)(-1) = 1 > 0$.
\begin{prop}
Let $x,y \in F$, where $F$ is an ordered field. If
$xy > 0$, then either both $x$ and $y$ are positive, or both are negative.
\end{prop}
\begin{proof}
We show the contrapositive: If either one of $x$ or $y$ is zero, or
if $x$ and $y$ have opposite signs, then $xy$ is not positive.
If $x$ or $y$ is zero, then $xy$ is zero and hence not positive.
Hence assume that $x$ and $y$ are nonzero and have
opposite signs.
Without loss of generality,
suppose $x > 0$ and $y < 0$.
Multiply $y < 0$ by $x$ to get $xy < 0x = 0$.
\end{proof}
\begin{example} \label{example:complexfield}
The reader may have heard about the \emph{\myindex{complex numbers}},
usually denoted by $\C$.\glsadd{not:complex}
That is, $\C$ is the set of numbers of
the form $x + iy$, where $x$ and $y$ are real numbers, and $i$ is the
imaginary number, a number such that $i^2 = -1$. The reader may
remember from algebra that $\C$ is also a field; however, it is not an
ordered field. While one can make $\C$ into an ordered set in some way,
it is not possible to put an
order on $\C$ that would make it an ordered field: In every ordered field,
$-1 < 0$ and $x^2 > 0$ for all nonzero $x$, but in $\C$, $i^2 = -1$.
\end{example}
Finally, an ordered field that has the least-upper-bound property has the
corresponding property for greatest lower bounds.
\begin{prop}
Let $F$ be an ordered field with the least-upper-bound property.
Let $A \subset F$ be a nonempty set that is bounded below.
Then $\inf\, A$ exists.
\end{prop}
\begin{proof}
Let $B \coloneqq \{ -x : x \in A \}$. Let $b \in F$ be a lower bound for $A$:
If $x \in A$, then $x \geq b$
and hence $-x \leq -b$. So $-b$
is an upper bound for $B$.
Since $F$ has the least-upper-bound property, $c\coloneqq\sup\, B$ exists, and $c \leq -b$.
As $y \leq c$
for all $y \in B$, then $-c \leq x$ for all $x \in A$.
So
$-c$ is a lower bound for $A$. As $-c \geq b$,
the greatest lower bound of $A$ exists and equals $-c$.
\end{proof}
\subsection{Exercises}
\begin{exercise}
Prove part \ref{prop:bordfield:iii} of \propref{prop:bordfield}.
That is, let $F$ be an ordered field and $x,y,z \in F$. Prove
If $x < 0$ and $y < z$, then $xy > xz$.
\end{exercise}
\begin{exercise} \label{exercise:finitesethasminmax}
Let $S$ be an ordered set. Let $A \subset S$ be a nonempty finite subset.
Then $A$ is bounded. Furthermore,
$\inf\, A$ exists and is in $A$ and
$\sup\, A$ exists and is in $A$.
Hint: Use \hyperref[induction:thm]{induction}.
\end{exercise}
\begin{exercise} \label{exercise:squareineq}
Prove part \ref{prop:bordfield:vi} of \propref{prop:bordfield}.
That is, let $x, y \in F$, where $F$ is an ordered field, such that
$0 < x < y$. Show that $x^2 < y^2$.
\end{exercise}
\begin{exercise}
Let $S$ be an ordered set. Let $B \subset S$ be bounded (above and
below). Let $A \subset B$ be a nonempty subset.
Suppose all the $\inf$s and
$\sup$s exist. Show that
\begin{equation*}
\inf\, B \leq \inf\, A \leq \sup\, A \leq \sup\, B .
\end{equation*}
\end{exercise}
\begin{exercise}
Let $S$ be an ordered set. Let $A \subset S$ and suppose
$b$ is an upper bound for $A$. Suppose $b \in A$. Show
that $b = \sup\, A$.
\end{exercise}
\begin{exercise}
Let $S$ be an ordered set. Let $A \subset S$ be nonempty and
bounded above.
Suppose $\sup\, A$ exists and
$\sup\, A \notin A$.
Show that $A$ contains a countably infinite
subset.
%In particular, $A$ is infinite.
\end{exercise}
\begin{exercise}
Find a nonstandard ordering of the set of natural numbers $\N$
such that there exists a nonempty proper subset $A \subsetneq \N$
and such that $\sup\, A$ exists in $\N$, but $\sup\, A \notin A$.
To keep things straight, it might be a good idea to use a different
notation for the nonstandard ordering such as $n \prec m$.
\end{exercise}
\begin{exercise}
\pagebreak[2]
Let $F \coloneqq \{ 0, 1, 2 \}$.
\begin{enumerate}[a)]
\item
Prove that there is
exactly one way to define addition and multiplication so that $F$ is
a field if $0$ and $1$ have their usual meaning of (A4) and (M4).
\item
Show that $F$ cannot be an ordered field.
\end{enumerate}
\end{exercise}
\begin{exercise} \label{exercise:dominatingb}
\pagebreak[2]
Let $S$ be an ordered set and
$A$ is a nonempty subset such that $\sup \, A$ exists. Suppose there
is a $B \subset A$ such that whenever $x \in A$ there is a $y \in B$
such that $x \leq y$. Show that $\sup \, B$ exists and $\sup \, B = \sup \, A$.
\end{exercise}
\begin{exercise}
Let $D$ be the ordered set of all possible words (not just English words,
all strings of letters of arbitrary length)
using the Latin alphabet using only lowercase letters. The order is the
lexicographic order as in a dictionary (e.g.\ \emph{aa} $<$ \emph{aaa} $<$ \emph{dog} $<$ \emph{door}).
Let $A$ be the subset of $D$ containing the words whose
first letter is `a' (e.g.\ \emph{a} $\in A$, \emph{abcd} $\in A$).
Show that $A$ has a supremum and find what it is.
\end{exercise}
\begin{exercise}
Let $F$ be an ordered field and $x,y,z,w \in F$.
\begin{enumerate}[a)]
\item
Prove part \ref{prop:bordfield:vii} of \propref{prop:bordfield}.
That is,
if $x \leq y$ and $z \leq w$, then $x+z \leq y+w$.
\item
Prove that
if $x < y$ and $z \leq w$, then $x+z < y+w$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Prove that any ordered field must contain a countably infinite set.
\end{exercise}
\begin{exercise}
Let $\N_{\infty} \coloneqq \N \cup \{ \infty \}$, where the elements of $\N$ are
ordered in the usual way amongst themselves,
and $k < \infty$ for every $k \in \N$. Show $\N_{\infty}$ is an ordered set
and that every subset $E \subset \N_{\infty}$ has a supremum in
$\N_{\infty}$ (make sure to also handle the case of an empty set).
\end{exercise}
\begin{exercise}
Let $S \coloneqq \{ a_k : k \in \N \} \cup \{ b_k : k \in \N \}$, ordered such that
$a_k < b_j$ for every $k$ and $j$,
$a_k < a_m$ whenever $k < m$,
and $b_k > b_m$ whenever $k < m$.
\begin{enumerate}[a)]
\item
Show that $S$ is an ordered set.
\item
Show that every subset of $S$ is bounded (both above and below).
\item
Find a bounded subset of $S$ that has no least upper bound.
\end{enumerate}
\end{exercise}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{The set of real numbers} \label{sec:setofreals}
%mbxINTROSUBSECTION
\sectionnotes{2 lectures, the extended real numbers are optional}
\subsection{The set of real numbers}
We finally get to the real number system. To simplify matters, instead of constructing the
real number set from the rational numbers, we simply state their existence
as a theorem without proof. Notice that $\Q$ is an ordered
field.
\begin{thm}
There exists a unique\footnote{Uniqueness is up to isomorphism, but we wish
to avoid excessive use of algebra. For us, it is simply enough to assume
that a set of real numbers exists. See Rudin~\cite{Rudin:baby} for the
construction and more details.}
ordered field $\R$ with the \hyperref[defn:lub]{least-upper-bound property}
such that $\Q \subset \R$.
\end{thm}
Note also that $\N \subset \Q$. We saw that $1 > 0$.
By \hyperref[induction:thm]{induction} (exercise),
we can prove that $n > 0$ for all $n \in \N$.
Similarly, we verify simple statements about rational numbers.
For example, we proved that if $n > 0$, then $\nicefrac{1}{n} > 0$.
Then $m < k$ implies $\nicefrac{m}{n} < \nicefrac{k}{n}$.
Analysis consists of proving inequalities, and
the following proposition, or one of its many variations,
is how an analyst proves a nonstrict inequality.
\begin{prop}
If $x \in \R$ is such that $x \leq \epsilon$ for all
$\epsilon \in \R$ where
$\epsilon > 0$, then $x \leq 0$.
\end{prop}
\begin{proof}
If $x > 0$, then $0 < \nicefrac{x}{2} < x$ (why?). Take
$\epsilon = \nicefrac{x}{2}$ to get a contradiction. Thus $x \leq 0$.
\end{proof}
For nonnegative $x$, equality results:
\emph{If $x \geq 0$ is such that $x \leq \epsilon$ for all
$\epsilon > 0$, then $x = 0$.}
A common version uses the absolute value (see \sectionref{sec:absval}):
\emph{If $\sabs{x} \leq \epsilon$ for all
$\epsilon > 0$, then $x = 0$.}
To prove $x \geq 0$, an analyst might prove
that $x \geq -\epsilon$ for all $\epsilon > 0$.
From now on, when we say $x \geq 0$ or
$\epsilon > 0$, we automatically mean that $x \in \R$ and $\epsilon \in \R$.
The idea behind the proposition above is that
any time we have two real numbers $a < b$, there is another
real number $c$ such that
$a < c < b$. Infinitely many such $c$ exist. One of them is, for example,
$c = \frac{a+b}{2}$ (why?).
We will use this fact in the next example.
The most useful property of $\R$ for analysts
is not just that it is an ordered field, but that it has the
\hyperref[defn:lub]{least-upper-bound property}.
Essentially, we want $\Q$, but we also
want to take suprema (and infima) willy-nilly.
So what we do is take $\Q$ and throw in enough numbers to obtain $\R$.
We mentioned already that $\R$ contains elements that are not in $\Q$
because of the \hyperref[defn:lub]{least-upper-bound property}. Let us
prove it.
We saw there is no
rational square root of two. The set
$\{ x \in \Q : x^2 < 2 \}$ implies the existence of the real number
$\sqrt{2}$, although this fact requires a bit of work. See also
\exerciseref{exercise:sqrt2QorR}.
\begin{example} \label{example:sqrt2}
Claim: \emph{There exists a unique positive
$r \in \R$ such that $r^2 = 2$. We denote $r$ by $\sqrt{2}$.}
\begin{proof}
Take the set
$A \coloneqq \{ x \in \R : x^2 < 2 \}$. We first show that $A$ is bounded above and
nonempty. The inequality $x \geq 2$ implies $x^2 \geq 4$
(see \exerciseref{exercise:squareineq}).
So if $x^2 < 2$, then $x < 2$. So $A$ is bounded above.
As $1 \in A$, the set $A$ is nonempty. The supremum, therefore, exists.
Let $r \coloneqq \sup\, A$. We will show that $r^2 = 2$ by showing
that $r^2 \geq 2$ and $r^2 \leq 2$. This is the way analysts show
equality, by showing two inequalities.
We already know that $r \geq 1 > 0$.
%\medskip
In the following, it may seem we are pulling certain expressions out of
a hat. When writing a proof such as this, we would, of course, come up with
the expressions only after playing around with what we wish to prove. The
order in which we write the proof is not necessarily the order in which we
come up with the proof.
Let us first show that $r^2 \geq 2$.
Take a positive number $s$ such that $s^2 < 2$. We wish to find an $h > 0$
such that ${(s+h)}^2 < 2$.
As $2-s^2 > 0$, we have $\frac{2-s^2}{2s+1} > 0$.
Choose an $h \in \R$ such that
$0 < h < \frac{2-s^2}{2s+1}$.
Furthermore, assume $h < 1$. Estimate,
\begin{equation*}
\begin{aligned}
{(s+h)}^2 - s^2 & = h(2s + h) \\
& < h(2s+1) & & \quad \bigl(\text{since } h < 1\bigr) \\
& < 2-s^2 & & \quad \bigl(\text{since } h < \tfrac{2-s^2}{2s+1} \bigr) .
\end{aligned}
\end{equation*}
Therefore, ${(s+h)}^2 < 2$. Hence $s+h \in A$, but as $h > 0$,
we have $s+h > s$. So $s < r = \sup\, A$. As $s$ was an arbitrary
positive number such that $s^2 < 2$, it follows that $r^2 \geq 2$.
%\medskip
Now take a positive number $s$ such that
$s^2 > 2$. We wish to find an $h > 0$ such that
${(s-h)}^2 > 2$ and $s-h$ is still positive.
As $s^2-2 > 0$, we have $\frac{s^2-2}{2s} > 0$.
Let $h \coloneqq \frac{s^2-2}{2s}$,
and check $s-h=s-\frac{s^2-2}{2s} = \frac{s}{2}+\frac{1}{s} > 0$.
Estimate,
\begin{equation*}
\begin{aligned}
s^2 - {(s-h)}^2 & = 2sh - h^2 \\
& < 2sh & & \quad \bigl( \text{since } h^2 > 0 \text{ as } h \not= 0 \bigr) \\
& = s^2-2 & & \quad \bigl( \text{since } h = \tfrac{s^2-2}{2s} \bigr) .
\end{aligned}
\end{equation*}
By subtracting $s^2$ from both sides and multiplying by $-1$, we find
${(s-h)}^2 > 2$. Therefore, $s-h \notin A$.
Moreover, if $x \geq s-h$,
then $x^2 \geq {(s-h)}^2 > 2$ (as $x > 0$ and $s-h > 0$) and so $x \notin A$.
Thus,
$s-h$ is an upper bound for $A$. However, $s-h < s$, or in other
words, $s > r = \sup\, A$. Hence, $r^2 \leq 2$.
\medskip
Together, $r^2 \geq 2$ and $r^2 \leq 2$ imply
$r^2 = 2$. The existence part is finished. We still need to
handle uniqueness. Suppose $s \in \R$ such that $s^2 = 2$ and $s > 0$.
Thus, $s^2 = r^2$. However, if $0 < s < r$, then $s^2 < r^2$. Similarly,
$0 < r < s$ implies $r^2 < s^2$. Hence, $s = r$.
\end{proof}
\end{example}
The number $\sqrt{2} \notin \Q$. The set
$\R \setminus \Q$ is called the set of
\emph{\myindex{irrational}} numbers. We just proved that $\R \setminus \Q$
is nonempty. Not only is it nonempty, as we will see, it is very
large indeed.
Using the same technique as above, we can show that a positive real
number $x^{1/n}$ exists for all $n\in \N$ and all $x > 0$.
That is, for each $x > 0$,
there exists a unique positive real number $r$ such that $r^n = x$.
The proof is left as an exercise.
\subsection{Archimedean property}
As we have seen, there are plenty of real numbers in any interval. But
there are also infinitely many rational numbers in any interval. The
following is one of the fundamental facts about the real numbers.
The two parts of the next theorem are actually equivalent, even though it may
not seem like that at first sight.
\begin{thm} \label{thm:arch}
%FIXMEevillayouthack
\pagebreak[3]
\leavevmode
\begin{enumerate}[(i)]
\item \label{thm:arch:i} \emph{(\myindex{Archimedean property})}%
\footnote{Named after the Ancient Greek mathematician
\href{https://en.wikipedia.org/wiki/Archimedes}{Archimedes of Syracuse}
(c.\ 287 BC -- c.\ 212 BC)\@.
This property is Axiom V from Archimedes' \myquote{On the Sphere and
Cylinder} 225
BC\@.}
If $x, y \in \R$ and
$x > 0$, then there exists an $n \in \N$ such that
\begin{equation*}
nx > y .
\end{equation*}
\item \label{thm:arch:ii} \emph{($\Q$ is dense in $\R$\index{density of
rational numbers})} If $x, y \in \R$ and
$x < y$, then there exists an $r \in \Q$ such that
$x < r < y$.
\end{enumerate}
\end{thm}
\begin{proof}
Let us prove \ref{thm:arch:i}. Divide through by $x$.
Then \ref{thm:arch:i} says that for every real number $t\coloneqq \nicefrac{y}{x}$,
we can find $n \in \N$ such that $n > t$. In other words,
\ref{thm:arch:i} says that $\N \subset \R$ is not bounded above.
Suppose for contradiction that $\N$ is bounded above. Let $b \coloneqq \sup \N$.
The number $b-1$ cannot possibly be an upper bound for $\N$ as it is strictly
less than $b$ (the least upper bound). Thus there exists an $m \in \N$ such that $m > b-1$.
Add one to obtain $m+1 > b$, contradicting $b$ being an
upper bound.
\begin{myfigureht}
\subimport*{figures/}{figdensofQ.pdf_t}
\caption{Idea of the proof of the density of $\Q$: Find $n$ such that $y-x >
\nicefrac{1}{n}$, then take the least $m$ such that $\nicefrac{m}{n} > x$.\label{figdensofQ}}
\end{myfigureht}
Let us tackle \ref{thm:arch:ii}.
See \figureref{figdensofQ}
for a picture of the idea behind the proof.
First assume $x \geq 0$.
Note that $y-x > 0$.
By \ref{thm:arch:i}, there exists an $n \in \N$ such that
\begin{equation*}
n(y-x) > 1
\qquad \text{or} \qquad
y-x > \nicefrac{1}{n}.
\end{equation*}
Again by \ref{thm:arch:i} the set
$A \coloneqq \{ k \in \N : k > nx \}$ is nonempty. By the
\hyperlink{wop:link}{well ordering property}
of $\N$, $A$ has a least element $m$, and as $m \in A$,
then $m > nx$.
Divide through by $n$ to get $x < \nicefrac{m}{n}$.
As $m$ is the least
element of $A$, $m-1 \notin A$.
If $m > 1$, then $m-1 \in \N$, but $m-1 \notin A$ and so $m-1 \leq nx$.
If $m=1$,
then $m-1 = 0$, and $m-1 \leq nx$ still holds as $x \geq 0$.
In other words,
\begin{equation*}
m-1 \leq nx \qquad \text{or} \qquad m \leq nx+1 .
\end{equation*}
On the other hand,
from $n(y-x) > 1$ we obtain $ny > 1+nx$.
Hence $ny > 1+nx \geq m$, and therefore $y > \nicefrac{m}{n}$.
Putting everything together, we obtain $x < \nicefrac{m}{n} < y$.
So take $r = \nicefrac{m}{n}$.
Now assume $x < 0$. If $y > 0$, then just take $r=0$. If
$y \leq 0$, then $0 \leq -y < -x$, and we
find a rational $q$ such that $-y < q < -x$. Then take $r = -q$.
\end{proof}
Let us state and prove a simple but useful corollary of the
\hyperref[thm:arch:i]{Archimedean property}.
\begin{cor}
$\inf \{ \nicefrac{1}{n} : n \in \N \} = 0$.
See \figureref{fig:oneovernset}.
\end{cor}
\begin{proof}
Let $A \coloneqq \{ \nicefrac{1}{n} : n \in \N \}$. Obviously, $A$ is not empty.
Furthermore,
$\nicefrac{1}{n} > 0$ for all $n \in \N$, so $0$ is a lower bound
and $b \coloneqq \inf\, A$ exists.
As $0$ is a lower bound, then $b \geq 0$.
Take an arbitrary $a > 0$. By the
\hyperref[thm:arch:i]{Archimedean property}, there exists an $n$ such that
$na > 1$, that is, $a > \nicefrac{1}{n} \in A$. Therefore,
$a$ cannot be a lower bound for $A$. Hence $b=0$.
\end{proof}
\begin{myfigureht}
\includegraphics{figures/oneovernset}
\caption{The set $\{ \nicefrac{1}{n} : n \in \N \}$ and its infimum $0$.\label{fig:oneovernset}}
\end{myfigureht}
\subsection{Using supremum and infimum}
Suprema and infima are
compatible with algebraic operations. For a set $A \subset \R$ and
$x \in \R$ define
\begin{align*}
x + A & \coloneqq \{ x+y \in \R : y \in A \} , \\
xA & \coloneqq \{ xy \in \R : y \in A \} .
\end{align*}
For example, if $A = \{ 1,2,3 \}$, then $5+A = \{ 6,7,8 \}$ and $3A = \{ 3,6,9
\}$.
\begin{prop} \label{prop:supinfalg}
Let $A \subset \R$ be nonempty.
\begin{enumerate}[(i)]
\item If $x \in \R$ and $A$ is bounded above, then $\sup (x+A) = x + \sup\, A$.
\item If $x \in \R$ and $A$ is bounded below, then $\inf (x+A) = x + \inf\, A$.
\item If $x > 0$ and $A$ is bounded above, then $\sup (xA) = x ( \sup\, A )$.
\item If $x > 0$ and $A$ is bounded below, then $\inf (xA) = x ( \inf\, A )$.
\item If $x < 0$ and $A$ is bounded below, then $\sup (xA) = x ( \inf\, A )$.
\item If $x < 0$ and $A$ is bounded above, then $\inf (xA) = x ( \sup\, A )$.
\end{enumerate}
\end{prop}
Do note that multiplying a set by a negative number switches supremum for an
infimum and vice versa. Also, as the proposition implies that
supremum (resp.\ infimum) of $x+A$ or $xA$ exists,
it also implies that $x+A$ or $xA$
is nonempty and bounded above (resp.\ below).
\begin{proof}
Let us only prove the first statement. The rest are left as exercises.
Suppose $b$ is an upper bound for $A$. That is, $y \leq b$ for all $y \in A$.
Then $x+y \leq x+b$ for all $y \in A$, and so $x+b$ is an upper
bound for $x+A$. In particular, if $b = \sup\, A$, then
\begin{equation*}
\sup (x+A) \leq x+b = x+ \sup\, A .
\end{equation*}
The opposite inequality is similar: If $c$ is an upper bound for $x+A$,
then $x+y \leq c$
for all $y \in A$ and so $y \leq c-x$ for all $y \in A$.
So $c-x$ is an upper bound for $A$.
If $c = \sup (x+A)$, then
\begin{equation*}
\sup\, A \leq c-x = \sup (x+A) -x .
\end{equation*}
The result follows.
\end{proof}
Sometimes we need to apply supremum or infimum twice. Here is an example.
\begin{prop} \label{infsupineq:prop}
Let $A, B \subset \R$ be nonempty sets such that $x \leq y$ whenever $x \in A$ and
$y \in B$. Then $A$ is bounded above, $B$ is bounded below, and $\sup\, A \leq \inf\, B$.
\end{prop}
\begin{proof}
Any $x \in A$ is a lower bound for $B$.
Therefore, $x \leq \inf\, B$ for all $x \in A$,
so $\inf\, B$ is an upper bound for $A$.
Hence, $\sup\, A \leq \inf\, B$.
\end{proof}
We must be careful about strict inequalities and taking suprema and infima.
Note that $x < y$ whenever $x \in A$ and
$y \in B$ still only implies $\sup\, A \leq \inf\, B$, and not a strict
inequality.
For example, take $A \coloneqq \{ 0 \}$ and $B \coloneqq \{ \nicefrac{1}{n}
: n \in \N \}$.
Then $0 < \nicefrac{1}{n}$
for all $n \in \N$. However, $\sup\, A = 0$ and $\inf\, B = 0$.
This important subtle point comes up often.
\medskip
\pagebreak[1]
The proof of the following
often used fact is left to the reader.
A similar result holds for infima.
\begin{prop} \label{prop:existsxepsfromsup}
If $S \subset \R$ is nonempty and bounded above,
then for every $\epsilon > 0$ there exists an $x \in S$ such
that $(\sup\, S) - \epsilon < x \leq \sup\, S$.
\end{prop}
To make using suprema and infima even easier, we may want to
write $\sup\, A$ and $\inf\, A$ without worrying about $A$ being
bounded and nonempty. We make the following natural definitions.
\begin{defn}
Let $A \subset \R$ be a set.
\begin{enumerate}[(i)]
\item If $A$ is empty, then $\sup\, A \coloneqq -\infty$.
\item If $A$ is not bounded above, then $\sup\, A \coloneqq \infty$.
\item If $A$ is empty, then $\inf\, A \coloneqq \infty$.
\item If $A$ is not bounded below, then $\inf\, A \coloneqq -\infty$.
\end{enumerate}
\end{defn}
For convenience, $\infty$ and $-\infty$ are sometimes treated as if they were
numbers, except we do not allow arbitrary arithmetic with them.
We make $\R^* \coloneqq \R \cup \{ -\infty , \infty\}$
\glsadd{not:extreal}\glsadd{not:infinity}
into an ordered set
by letting
\begin{equation*}
-\infty < \infty \quad \text{and} \quad
-\infty < x \quad \text{and} \quad
x < \infty \quad \text{for all $x \in \R$}.
\end{equation*}
The set $\R^*$ is called the set of \emph{\myindex{extended real numbers}}.
It is possible to define some arithmetic on $\R^*$. Most operations
are extended in an obvious way, but we must leave
$\infty-\infty$, $0 \cdot (\pm\infty)$, and $\frac{\pm\infty}{\pm\infty}$
undefined.
We refrain from
using this arithmetic,
it leads to easy mistakes as $\R^*$ is not a field.
Now we can take suprema and infima without fear of emptiness or
unboundedness. In this book, we mostly avoid
using $\R^*$ outside of exercises and leave such generalizations to the interested reader.
\subsection{Maxima and minima}
By \exerciseref{exercise:finitesethasminmax},
a finite set of numbers always has a supremum and an infimum
and they are both contained in the set itself.
In this case, we usually do not use the words supremum or infimum.
When a set $A$ of real numbers is bounded above and
$\sup\, A \in A$, we can use the word
\emph{\myindex{maximum}} and the notation $\max\, A$\glsadd{not:max} to denote the supremum.
Similarly for infimum: When $A$ is bounded below
and $\inf\, A \in A$, we can use the
word \emph{\myindex{minimum}} and the notation $\min\, A$.\glsadd{not:min}
For example,
\begin{align*}
& \max \{ 1,2.4,\pi,100 \} = 100 , \\
& \min \{ 1,2.4,\pi,100 \} = 1 .
\end{align*}
While writing $\sup$ and $\inf$ may be technically
correct in this situation, $\max$ and
$\min$ are generally used to emphasize that the supremum or infimum
is in the set itself, especially when the set is finite.
\subsection{Exercises}
\begin{exercise}
Prove that
if $t > 0$ ($t \in \R$), then there exists an $n \in \N$ such that
$\dfrac{1}{n^2} < t$.
\end{exercise}
\begin{exercise}
Prove that
if $t \geq 0$ ($t \in \R$), then there exists an $n \in \N$ such that $n-1 \leq t < n$.
\end{exercise}
\begin{exercise}
Finish the proof of \propref{prop:supinfalg}.
\end{exercise}
\begin{exercise}
Let $x, y \in \R$. Suppose $x^2 + y^2 = 0$. Prove that $x = 0$ and $y = 0$.
\end{exercise}
\begin{exercise}
Show that $\sqrt{3}$ is irrational.
\end{exercise}
\begin{exercise}
Let $n \in \N$.
Show that $\sqrt{n}$ is either an integer or it is
irrational.
\end{exercise}
\begin{exercise}
Prove the \emph{\myindex{arithmetic-geometric mean inequality}}.
For two positive real numbers $x,y$,
\begin{equation*}
\sqrt{xy} \leq \frac{x+y}{2} .
\end{equation*}
Furthermore, equality occurs if and only if $x=y$.
\end{exercise}
\begin{exercise}
Show that for every pair of real numbers $x$ and $y$ such that $x < y$, there
exists an irrational number $s$ such that $x < s < y$. Hint:
Apply the density of $\Q$ to $\dfrac{x}{\sqrt{2}}$ and
$\dfrac{y}{\sqrt{2}}$.
\end{exercise}
\begin{exercise} \label{exercise:supofsum}
Let $A$ and $B$ be two nonempty bounded sets of real numbers. Let
$C \coloneqq \{ a+b : a \in A, b \in B \}$.
Show that $C$ is a bounded set and that
\begin{equation*}
\sup\,C = \sup\,A + \sup\,B
\qquad \text{and} \qquad
\inf\,C = \inf\,A + \inf\,B .
\end{equation*}
\end{exercise}
\begin{exercise}
Let $A$ and $B$ be two nonempty bounded sets of nonnegative real numbers.
Define the set
$C \coloneqq \{ ab : a \in A, b \in B \}$.
Show that $C$ is a bounded set and that
\begin{equation*}
\sup\,C = (\sup\,A )( \sup\,B)
\qquad \text{and} \qquad
\inf\,C = (\inf\,A )( \inf\,B).
\end{equation*}
\end{exercise}
\begin{exercise}[Hard] \label{exercise:rootexistshard}