-
Notifications
You must be signed in to change notification settings - Fork 20
/
ch-laplace.tex
2587 lines (2350 loc) · 73.6 KB
/
ch-laplace.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{The Laplace transform} \label{LT:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The Laplace transform}
\label{laplace:section}
%mbxINTROSUBSECTION
\sectionnotes{1.5--2 lectures\EPref{, \S10.1 in \cite{EP}}\BDref{,
\S6.1 and parts of \S6.2 in \cite{BD}}}
\subsection{The transform}
In this chapter, we will discuss the Laplace transform%
\footnote{Just like the Laplace equation and the Laplacian, the Laplace
transform is also named after
\href{https://en.wikipedia.org/wiki/Laplace}{Pierre-Simon, marquis de Laplace}
(1749--1827).}.
The Laplace transform
is a very efficient method to solve certain ODE or PDE problems.
The transform takes a differential equation and turns it into
an algebraic equation. If the algebraic equation can be solved, applying the
inverse transform gives us our desired solution.
The Laplace transform also has applications in
the analysis of
electrical circuits, NMR spectroscopy, signal processing, and elsewhere.
Finally,
understanding the Laplace
transform will also help with understanding the related Fourier transform,
which, however, requires more
understanding of complex numbers. We will not cover the Fourier transform.
The Laplace transform also gives a lot of insight into the nature of the
equations we are dealing with. It can be seen as converting between the time
and the frequency domain. For example, take the standard equation
\begin{equation*}
m x''(t) + c x'(t) + k x(t) = f(t) .
\end{equation*}
We can think of $t$ as time and $f(t)$ as incoming signal. The Laplace
transform will convert the equation from a differential equation in time to
an algebraic (no derivatives) equation, where the new independent variable
$s$ is the frequency.\footnote{Really, it is the ``frequency'' in terms
of complex numbers, but we digress.}
We can think of the \emph{\myindex{Laplace transform}} as a black box. It
eats functions and spits out functions in a new variable. We write
$\mathcal{L} \bigl\{ f(t) \bigr\} = F(s)$ for the Laplace transform of $f(t)$.
It is common to write lower case letters for
functions in the time domain and upper case letters for functions in the
frequency domain. We use the same letter to denote that one function
is the Laplace transform of the other. For example, $F(s)$ is the Laplace
transform of $f(t)$. Let us define the transform.
\begin{equation*}
\mathcal{L} \bigl\{ f(t) \bigr\} =
F(s) \overset{\text{def}}{=} \int_0^\infty e^{-st} f(t) \, dt .
\end{equation*}
We note that we are only considering $t \geq 0$ in the transform. Of course,
if we think of $t$ as time, there is no problem, we are generally interested in
finding out what will happen in the future (Laplace transform is one place
where it is safe to ignore the past). Let us compute some simple
transforms.
\begin{example}
Suppose $f(t) = 1$, then
\begin{equation*}
\mathcal{L} \{1\} = \int_0^\infty e^{-st} \, dt
=
\left[ \frac{e^{-st}}{-s} \right]_{t=0}^\infty
=
\lim_{h\to\infty}
\left[ \frac{e^{-st}}{-s} \right]_{t=0}^h
=
\lim_{h\to\infty}
\left( \frac{e^{-sh}}{-s} - \frac{1}{-s} \right)
= \frac{1}{s} .
\end{equation*}
The limit (the improper integral) only exists if $s > 0$. So
$\mathcal{L} \{1\}$ is only defined for $s > 0$.
\end{example}
\begin{example}
Suppose $f(t) = e^{-at}$, then
\begin{equation*}
\mathcal{L} \bigl\{e^{-at}\bigr\}
= \int_0^\infty e^{-st} e^{-at} \, dt
= \int_0^\infty e^{-(s+a)t} \, dt
=
\left[ \frac{e^{-(s+a)t}}{-(s+a)} \right]_{t=0}^\infty
= \frac{1}{s+a} .
\end{equation*}
The limit only exists if $s+a > 0$. So
$\mathcal{L} \bigl\{e^{-at}\bigr\}$ is only defined for $s+a > 0$.
\end{example}
\begin{example}
Suppose $f(t) = t$, then using integration by parts
\begin{equation*}
\begin{split}
\mathcal{L} \{t\}
& = \int_0^\infty e^{-st} t \, dt \\
& =
\left[ \frac{-te^{-st}}{s} \right]_{t=0}^\infty
+
\frac{1}{s}
\int_0^\infty e^{-st} \,dt \\
& =
0
+
\frac{1}{s}
\left[ \frac{e^{-st}}{-s} \right]_{t=0}^\infty \\
& =
\frac{1}{s^2} .
\end{split}
\end{equation*}
Again, the limit only exists if $s > 0$.
\end{example}
\begin{example}
A common function is the \emph{\myindex{unit step function}}, which is
sometimes called the \emph{\myindex{Heaviside function}}%
\footnote{The function is named after the English mathematician, engineer, and
physicist
\href{https://en.wikipedia.org/wiki/Heaviside}{Oliver Heaviside}
(1850--1925). Only
by coincidence is the function \myquote{heavy} on \myquote{one side.}}.
This function is generally given as
\begin{equation*}
u(t) =
\begin{cases}
0 & \text{if } \; t < 0 , \\
1 & \text{if } \; t \geq 0 .
\end{cases}
\end{equation*}
%Note that some authors prefer to define $u(0) = \frac{1}{2}$.
Let us find the Laplace transform of $u(t-a)$, where $a \geq 0$
is some constant.
That is, it is the function that is $0$ for $t < a$ and $1$ for $t \geq a$.
\begin{equation*}
\mathcal{L} \bigl\{ u(t-a) \bigr\}
=
\int_0^{\infty} e^{-st} u(t-a) \, dt
=
\int_a^{\infty} e^{-st} \, dt
=
\left[ \frac{e^{-st}}{-s} \right]_{t=a}^\infty \\
=
\frac{e^{-as}}{s} ,
\end{equation*}
where of course $s > 0$ (and $a \geq 0$ as we said before).
\end{example}
By applying similar procedures, we can compute the transforms of many
elementary functions. Many basic transforms are listed in
\tablevref{lt:table}.
\begin{table}[h!t]
\mybeginframe
\capstart
\begin{center}
\begin{tabular}{@{}lllll@{}}
\toprule
$f(t)$ & $\mathcal{L} \bigl\{ f(t) \bigr\}$ & $\qquad\quad$ &
$f(t)$ & $\mathcal{L} \bigl\{ f(t) \bigr\}$ \\
\midrule
$C$ & $\frac{C}{s}$
& &
$\sin (\omega t)$ & $\frac{\omega}{s^2+\omega^2}$
\\[4pt]
$t$ & $\frac{1}{s^2}$
& &
$\cos (\omega t)$ & $\frac{s}{s^2+\omega^2}$
\\[4pt]
$t^2$ & $\frac{2}{s^3}$
& &
$\sinh (\omega t)$ & $\frac{\omega}{s^2-\omega^2}$
\\[4pt]
$t^3$ & $\frac{6}{s^4}$
& &
$\cosh (\omega t)$ & $\frac{s}{s^2-\omega^2}$
\\[4pt]
$t^n$ & $\frac{n!}{s^{n+1}}$
& &
$u(t-a)$ & $\frac{e^{-as}}{s}$
\\[4pt]
$e^{-at}$ & $\frac{1}{s+a}$
& & &
\\[4pt]
\bottomrule
\end{tabular}
\end{center}
\caption{Some Laplace transforms ($C$, $\omega$, and $a$ are
constants).\label{lt:table}}
\myendframe
\end{table}
\begin{exercise}
Verify \tablevref{lt:table}.
\end{exercise}
Since the transform is defined by an integral, we can use the linearity
properties of the integral. For example, suppose $C$ is a constant, then
\begin{equation*}
\mathcal{L} \bigl\{ C f(t) \bigr\} =
\int_0^\infty e^{-st} C f(t) \,dt =
C \int_0^\infty e^{-st} f(t) \,dt =
C \mathcal{L} \bigl\{ f(t) \bigr\} .
\end{equation*}
So we can \myquote{pull out} a constant out of the transform.
Similarly, with addition.
As linearity is important, we state it as a theorem.
\begin{theorem}[Linearity of the Laplace transform]
\index{linearity of the Laplace transform}
Suppose that $A$, $B$, and $C$ are constants, then
\begin{equation*}
\mybxbg{~~
\mathcal{L} \bigl\{ A f(t) + B g(t) \bigr\} =
A \mathcal{L} \bigl\{ f(t) \bigr\} +
B \mathcal{L} \bigl\{ g(t) \bigr\} ,
~~}
\end{equation*}
and in particular,
\begin{equation*}
\mathcal{L} \bigl\{ C f(t) \bigr\} =
C \mathcal{L} \bigl\{ f(t) \bigr\} .
\end{equation*}
\end{theorem}
\begin{exercise}
Verify the theorem. That is, show that
$\mathcal{L} \bigl\{ A f(t) + B g(t) \bigr\} =
A \mathcal{L} \bigl\{ f(t) \bigr\} +
B \mathcal{L} \bigl\{ g(t) \bigr\}$.
\end{exercise}
These rules together with \tablevref{lt:table} make it easy to find
the Laplace transform of a whole lot of functions already.
For example:
\[
\mathcal{L}\bigl\{
2 + 5t + 9e^{-2t}
\bigr\}
=
\mathcal{L}\bigl\{
2
\bigr\}
+5
\mathcal{L}\bigl\{
t
\bigr\}
+
9
\mathcal{L}\bigl\{
e^{-2t}
\bigr\}
=
\frac{2}{s} + \frac{5}{s^2} + \frac{9}{s+2} .
\]
Be careful!
The Laplace transform of a product
is \emph{not} the product of the transforms. In general
\begin{equation*}
\mathcal{L} \bigl\{ f(t) g(t) \bigr\} \not=
\mathcal{L} \bigl\{ f(t) \bigr\}
\mathcal{L} \bigl\{ g(t) \bigr\} .
\end{equation*}
Moreover, not all functions have a Laplace transform. For
example, the function $\frac{1}{t}$ does not have a Laplace transform as the
integral diverges for all $s$. Similarly,
$\tan t$ or $e^{t^2}$ do not have Laplace transforms.
\subsection{Existence and uniqueness}
When does the Laplace transform exist? A function $f(t)$ is of
\emph{\myindex{exponential order}} as $t$ goes to infinity if
\begin{equation*}
\lvert f(t) \rvert \leq M e^{ct} ,
\end{equation*}
for some constants $M$ and $c$, for
sufficiently large $t$ (say for all $t > t_0$ for some $t_0$). The simplest
way to check this condition is to try and compute
\begin{equation*}
\lim_{t\to \infty} \frac{f(t)}{e^{ct}} .
\end{equation*}
If the limit exists and is finite (usually zero), then $f(t)$ is of
exponential order.
\begin{exercise}
Use L'Hopital's rule from calculus to show that a polynomial is of
exponential order. Hint: Note that a sum of two exponential order functions
is also of exponential order. Then show that $t^n$ is of exponential order
for any $n$.
\end{exercise}
For an exponential order function we have existence and uniqueness of the
Laplace transform.
\begin{theorem}[Existence]
Let $f(t)$ be continuous on the interval $[0,\infty)$ and of exponential order for a certain
constant $c$. Then $F(s) = \mathcal{L} \bigl\{ f(t) \bigr\}$ is defined for
all $s > c$.
\end{theorem}
The existence is not difficult to see. Let $f(t)$ be of exponential order,
that is $\lvert f(t) \rvert \leq M e^{ct}$ for all $t > 0$ (for simplicity $t_0 = 0$).
Let $s > c$, or in other words $(s-c) > 0$.
By the comparison theorem from calculus, the improper integral defining
$\mathcal{L} \bigl\{ f(t) \bigr\}$ exists because the following integral exists
\begin{equation*}
\int_0^\infty e^{-st} ( M e^{ct} ) \,dt
=
M \int_0^\infty e^{-(s-c)t} \,dt = M \left[ \frac{e^{-(s-c)t}}{-(s-c)}
\right]_{t=0}^\infty = \frac{M}{s-c} .
\end{equation*}
The transform also exists for some other functions
that are not of exponential
order, but that will not be relevant to us.
Before dealing with uniqueness,
we note that for functions of exponential order, their
Laplace transform decays at infinity:
\begin{equation*}
\lim_{s\to\infty} F(s) = 0 .
\end{equation*}
\begin{theorem}[Uniqueness] \label{lt:uniqthm}
Let $f(t)$ and $g(t)$ be continuous and of exponential order.
Suppose that there exists a constant $C$,
such that $F(s) = G(s)$ for all $s > C$.
Then $f(t) = g(t)$ for all $t \geq 0$.
\end{theorem}
Both theorems hold for piecewise continuous functions as well.
Recall that piecewise continuous means that the function
is continuous except perhaps at a discrete set of points, where it has jump
discontinuities like the Heaviside function. Uniqueness, however, does
not \myquote{see} values at the discontinuities. So we can only conclude that
$f(t) = g(t)$ outside of discontinuities. For example, the unit step
function is sometimes defined using $u(0) = \nicefrac{1}{2}$. This new
step function, however, has the exact same Laplace transform
as the one we defined earlier, where $u(0) = 1$.
\subsection{The inverse transform}
As we said, the Laplace transform will allow us to convert a differential
equation into an algebraic equation. Once we solve the
algebraic equation in the frequency domain, we will want to get back to the
time domain, as that is what we are interested in.
Given a function
$F(s)$, we wish to find a function
$f(t)$ such that $\mathcal{L} \bigl\{ f(t) \bigr\} = F(s)$.
\thmref{lt:uniqthm} says that the solution $f(t)$ is unique.
So we can without fear make the following definition.
Suppose $F(s) = \mathcal{L} \bigl\{ f(t) \bigr\}$ for some function $f(t)$.
Define the
\emph{\myindex{inverse Laplace transform}} as
\begin{equation*}
{\mathcal{L}}^{-1} \bigl\{ F(s) \bigr\} \overset{\text{def}}{=} f(t) .
\end{equation*}
There is an integral formula for the inverse, but it is not as simple
as the transform itself---it requires complex numbers and path integrals.
For us it will
suffice to
compute the inverse using \tablevref{lt:table}.
\begin{example}
Take
$F(s) = \frac{1}{s+1}$. Find the inverse Laplace transform.
We look at the table to find
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{1}{s+1} \right\} =
e^{-t} .
\end{equation*}
\end{example}
As the Laplace transform is linear, the inverse Laplace
transform is also linear. That is,
\begin{equation*}
{\mathcal{L}}^{-1} \bigl\{ A F(s) + B G(s) \bigr\} =
A {\mathcal{L}}^{-1} \bigl\{ F(s) \bigr\} +
B {\mathcal{L}}^{-1} \bigl\{ G(s) \bigr\} .
\end{equation*}
Of course, we also have
${\mathcal{L}}^{-1} \bigl\{ A F(s) \bigr\} =
A {\mathcal{L}}^{-1} \bigl\{ F(s) \bigr\}$.
%Let us demonstrate how linearity can be used.
\begin{example}
Take
$F(s) = \frac{s^2+s+1}{s^3+s}$. Find the inverse Laplace transform.
First we use the \emph{\myindex{method of partial fractions}} to write $F$ in a form where
we can use \tablevref{lt:table}. We factor the denominator as
$s(s^2+1)$ and write
\begin{equation*}
\frac{s^2+s+1}{s^3+s}
=
\frac{A}{s} +
\frac{Bs+C}{s^2+1} .
\end{equation*}
Putting the right-hand side over a common
denominator and equating the numerators we get
$A(s^2+1) + s(Bs+C) = s^2+s+1$. Expanding and equating coefficients,
we obtain $A+B = 1$, $C=1$, $A=1$,
and thus $B=0$. In
other words,
\begin{equation*}
F(s) =
\frac{s^2+s+1}{s^3+s}
=
\frac{1}{s} +
\frac{1}{s^2+1} .
\end{equation*}
By linearity of the inverse Laplace transform, we get
\begin{equation*}
{\mathcal{L}}^{-1} \left\{
\frac{s^2+s+1}{s^3+s} \right\}
=
{\mathcal{L}}^{-1} \left\{
\frac{1}{s} \right\}
+
{\mathcal{L}}^{-1} \left\{
\frac{1}{s^2+1} \right\}
=
1 +
\sin t .
\end{equation*}
\end{example}
Another useful property is the
so-called \emph{\myindex{shifting property}} or
the \emph{\myindex{first shifting property}}
\begin{equation*}
\mybxbg{~~
\mathcal{L} \bigl\{ e^{-at} f(t) \bigr\} = F(s+a) ,
~~}
\end{equation*}
where $F(s)$ is the Laplace transform of $f(t)$.
\begin{exercise}
Derive the first shifting property
from the definition of the Laplace transform.
\end{exercise}
The shifting property can be used, for example, when the denominator is a
more complicated quadratic that may come up in the method of partial
fractions. We complete the square and write such quadratics as ${(s+a)}^2+b$
and then use the shifting property.
\begin{example}
Find
${\mathcal{L}}^{-1} \left\{ \frac{1}{s^2+4s+8} \right\}$.
First, we complete the square to make the denominator ${(s+2)}^2+4$.
We find
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{1}{s^2+4} \right\}
=
\frac{1}{2}
{\mathcal{L}}^{-1} \left\{ \frac{2}{s^2+2^2} \right\}
=
\frac{1}{2} \sin (2t) .
\end{equation*}
Finally, we put it all together with the shifting property to find
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{1}{s^2+4s+8} \right\} =
{\mathcal{L}}^{-1} \left\{ \frac{1}{{(s+2)}^2+4} \right\}
=
\frac{1}{2}\,e^{-2t} \sin (2t) .
\end{equation*}
\end{example}
Often, we want to be able to apply the inverse Laplace transform to
rational functions, that is, functions of the form
\begin{equation*}
\frac{F(s)}{G(s)}
\end{equation*}
where $F(s)$ and $G(s)$ are polynomials. If $\frac{F(s)}{G(s)}$ is
the Laplace transform of an exponential order function,
it goes to zero as $s \to \infty$, and so the degree of $F(s)$
must be smaller than that of $G(s)$. Such rational functions
are called \emph{proper rational functions\index{proper rational function}}
and we can always apply the method of partial fractions without polynomial
division.
Of course, we still need to be able to factor the denominator into
linear and quadratic terms, which involves finding the roots of the
denominator.
\subsection{Exercises}
\begin{exercise}
Find the Laplace transform of $3+t^5+\sin (\pi t)$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $a+bt+ct^2$ for some constants $a$, $b$, and
$c$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $A \cos (\omega t) + B \sin (\omega t)$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $\cos^2 (\omega t)$.
\end{exercise}
\begin{exercise}
Find the inverse Laplace transform of $\frac{4}{s^2-9}$.
\end{exercise}
\begin{exercise}
Find the inverse Laplace transform of $\frac{2s}{s^2-1}$.
\end{exercise}
\begin{exercise}
Find the inverse Laplace transform of $\frac{1}{{(s-1)}^2(s+1)}$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $f(t) =
\begin{cases}
t & \text{if } \; t \geq 1, \\
0 & \text{if } \; t < 1.
\end{cases}$
\end{exercise}
\begin{exercise}
Find the inverse Laplace transform of $\frac{s}{(s^2+s+2)(s+4)}$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $\sin\bigl(\omega (t-a)\bigr)$.
\end{exercise}
\begin{exercise}
Find the Laplace transform of $t\sin(\omega t)$. Hint: Several integrations
by parts.
\end{exercise}
\setcounter{exercise}{100}
\begin{exercise}
Find the Laplace transform of $4{(t+1)}^2$.
\end{exercise}
\exsol{%
$\frac{8}{s^3} + \frac{8}{s^2} + \frac{4}{s}$
}
\begin{exercise}
Find the inverse Laplace transform of $\frac{8}{s^3(s+2)}$.
\end{exercise}
\exsol{%
$2t^2-2t+1-e^{-2t}$
}
\begin{exercise}
Find the Laplace transform of $te^{-t}$. Hint: Integrate by parts.
\end{exercise}
\exsol{%
$\frac{1}{{(s+1)}^2}$
}
\begin{exercise}
Find the Laplace transform of $\sin(t)e^{-t}$. Hint: Integrate by parts.
\end{exercise}
\exsol{%
$\frac{1}{s^2+2s+2}$
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Transforms of derivatives and ODEs}
\label{transformsofders:section}
%mbxINTROSUBSECTION
\sectionnotes{2 lectures\EPref{, \S7.2--7.3 in \cite{EP}}\BDref{,
\S6.2 and \S6.3 in \cite{BD}}}
\subsection{Transforms of derivatives}
Let us see how the Laplace transform is used for differential equations.
First we find the Laplace transform of the derivative of a function.
Suppose $g(t)$ is a differentiable function
of exponential order, that is, $\lvert g(t) \rvert \leq M e^{ct}$ for some
$M$ and $c$. So $\mathcal{L} \bigl\{ g(t) \bigr\}$ exists, and what is more,
$\lim_{t\to\infty} e^{-st}g(t) = 0$ when $s > c$. Then
\begin{equation*}
\mathcal{L} \bigl\{ g'(t) \bigr\}
=
\int_0^\infty
e^{-st}
g'(t) \,dt
=
\Bigl[e^{-st} g(t) \Bigr]_{t=0}^\infty
-
\int_0^\infty
(-s)\,
e^{-st}
g(t) \,dt
=
-g(0) + s \mathcal{L} \bigl\{ g(t) \bigr\} .
\end{equation*}
We repeat this procedure for higher derivatives.
The results are
listed in \tablevref{ltd:table}. The procedure also works for continuous piecewise
smooth functions, that is, functions that are continuous with a
piecewise continuous derivative.
%The fact that the function is of
%exponential order is used to show that the limits appearing above
%exist. We will not worry much about this fact.
\begin{table}[h!t]
\mybeginframe
\capstart
\begin{center}
\begin{tabular}{@{}ll@{}}
\toprule
$f(t)$ & $\mathcal{L} \bigl\{ f(t) \bigr\} = F(s)$ \\
\midrule
$g'(t)$ & $sG(s)-g(0)$ \\[4pt]
$g''(t)$ & $s^2G(s)-sg(0)-g'(0)$ \\[4pt]
$g'''(t)$ & $s^3G(s)-s^2g(0)-sg'(0)-g''(0)$ \\[4pt]
\bottomrule
\end{tabular}
\end{center}
\caption{Laplace transforms of derivatives
($G(s) = \mathcal{L} \bigl\{ g(t) \bigr\}$
as usual).\label{ltd:table}}
\myendframe
\end{table}
\begin{exercise}
Verify \tablevref{ltd:table}.
\end{exercise}
\subsection{Solving ODEs with the Laplace transform}
Notice that the Laplace transform turns differentiation into
multiplication by $s$.
It is this property that makes it useful to apply
the transform to differential equations.
\begin{example}
Take the equation
\begin{equation*}
x''(t) + x(t) = \cos (2t), \quad x(0) = 0, \quad x'(0) = 1 .
\end{equation*}
We will take the Laplace transform of both sides.
By $X(s)$ we will, as usual, denote the Laplace transform of
$x(t)$.
\begin{align*}
\mathcal{L} \bigl\{ x''(t) + x(t) \bigr\} & = \mathcal{L} \bigl\{ \cos (2t) \bigr\} , \\
s^2 X(s) -sx(0)-x'(0) + X(s) & = \frac{s}{s^2 + 4} .
\end{align*}
We plug in the initial conditions now---making computations more
streamlined---to find
\begin{equation*}
s^2 X(s) -1 + X(s) = \frac{s}{s^2 + 4} .
\end{equation*}
We solve for $X(s)$,
\begin{equation*}
X(s) = \frac{s}{(s^2+1)(s^2 + 4)} + \frac{1}{s^2+1} .
\end{equation*}
We use partial fractions (exercise) to write
\begin{equation*}
X(s) =\frac{1}{3} \, \frac{s}{s^2+1} -
\frac{1}{3}\, \frac{s}{s^2+4} + \frac{1}{s^2+1} .
\end{equation*}
Now take the inverse Laplace transform to obtain
\begin{equation*}
x(t) =\frac{1}{3} \cos (t) -
\frac{1}{3} \cos (2t) + \sin (t) .
\end{equation*}
\end{example}
The procedure for linear constant coefficient equations is as follows:
Take an ordinary differential
equation in the time variable $t$. Apply the Laplace transform
to transform the equation into an algebraic (non differential) equation in
the frequency domain. All the $x(t)$, $x'(t)$, $x''(t)$, and so on, will
be converted to $X(s)$, $sX(s) - x(0)$, $s^2X(s) - sx(0) - x'(0)$,
and so on.
Solve the equation for $X(s)$.
Then taking the inverse transform, if possible, find $x(t)$.
It should be noted that since not every function has a Laplace transform,
not every equation can be solved in this manner. Also if the equation
is not a linear constant coefficient ODE\@,
then by applying the Laplace transform we may not
obtain an algebraic equation.
\subsection{Using the Heaviside function}
Before we move on to more general equations
than those we could solve before,
we want to consider the Heaviside function. See \figurevref{lt:heavisidefig}
for the graph.
\begin{equation*}
u(t) =
\begin{cases}
0 & \text{if } \; t < 0 , \\
1 & \text{if } \; t \geq 0 .
\end{cases}
\end{equation*}
\begin{myfig}
\capstart
\diffyincludegraphics{width=3in}{width=4.5in}{lt-heaviside}
\caption{Plot of the Heaviside (unit step) function
$u(t)$.\label{lt:heavisidefig}}
\end{myfig}
The Heaviside function is useful for
putting other functions together or cutting functions off. Usually we use
$u(t-a)$ for some constant $a$; we just shift the graph to the
right by $a$. That is, $u(t-a) = 0$ when $t < a$ and $u(t-a) = 1$
when $t \geq a$. For example, suppose $f(t)$ is a \myquote{signal},
and we started receiving $\sin t$ at time $t=\pi$.
The function $f(t)$ is then defined as
\begin{equation*}
f(t) =
\begin{cases}
0 & \text{if } \; t < \pi , \\
\sin t & \text{if } \; t \geq \pi .
\end{cases}
\end{equation*}
Using the Heaviside function, $f(t)$ can
be written as
\begin{equation*}
f(t) = u(t - \pi) \, \sin t .
\end{equation*}
Similarly, the step function that is $1$ on the interval $[1,2)$ and $0$
elsewhere is written as
\begin{equation*}
u(t - 1) - u(t-2) .
\end{equation*}
With the Heaviside function we can express functions defined piecewise.
If $f(t) = t$ when $t$ is in $[0,1]$,
$f(t) = -t+2$
when $t$ is in $[1,2]$, and $f(t) = 0$ otherwise, then you write
\begin{equation*}
f(t) = t \, \bigl( u(t) - u(t-1) \bigr) +
(-t+2) \, \bigl( u(t - 1) - u(t-2) \bigr) .
\end{equation*}
How does the Heaviside function interact with the Laplace
transform? We saw that
\begin{equation*}
\mathcal{L} \bigl\{ u(t-a) \bigr\} = \frac{e^{-as}}{s} .
\end{equation*}
This computation can be generalized into a \emph{\myindex{shifting property}}
or \emph{\myindex{second shifting property}}.
\begin{equation} \label{ltd:sseq}
\mybxbg{~~
\mathcal{L} \bigl\{ f(t-a) \, u(t-a) \bigr\}
= e^{-as} \mathcal{L} \bigl\{ f(t) \bigr\} .
~~}
\end{equation}
For example,
\begin{equation*}
\mathcal{L} \bigl\{ t \, u(t-1) \bigr\}
=
\mathcal{L} \bigl\{ \bigl( (t-1) + 1\bigr) \, u(t-1) \bigr\}
= e^{-as} \mathcal{L} \bigl\{ t+1 \bigr\}
= e^{-as} \left(\frac{1}{s^2} + \frac{1}{s} \right)
%= e^{-as} \Bigl(\frac{1}{s^2} + \frac{1}{s} \Bigr)
%= \frac{e^{-as}}{s^2} + \frac{e^{-as}}{s}
.
\end{equation*}
\begin{example} \label{lt:rocketex}
Consider
the mass-spring system
\begin{equation*}
x''(t) + x(t) = f(t) , \quad x(0) = 0, \quad x'(0) = 0,
\end{equation*}
where $f(t) = 1$ if $1 \leq t < 5$ and zero otherwise.
The $f(t)$ is not periodic and defined piecewise; no problem for Laplace.
Imagine a
rocket attached to the mass is fired for 4 seconds starting at
$t=1$. Or perhaps imagine an RLC circuit, where the voltage is raised
at a constant rate for 4 seconds starting at $t=1$ and then held steady
again
starting at $t=5$.
We write $f(t) = u(t-1) - u(t-5)$. We transform the equation and we plug in
the initial conditions as before
\begin{equation*}
s^2 X(s) + X(s) = \frac{e^{-s}}{s} - \frac{e^{-5s}}{s} .
\end{equation*}
We solve for $X(s)$,
\begin{equation*}
X(s) = \frac{e^{-s}}{s(s^2+1)} - \frac{e^{-5s}}{s(s^2+1)} .
\end{equation*}
We leave it as an exercise to the reader to show that
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{1}{s(s^2+1)} \right\}
= 1 - \cos t .
\end{equation*}
In other words,
$\mathcal{L} \{ 1 - \cos t \} =
\frac{1}{s(s^2+1)}$.
Using the second shifting property \eqref{ltd:sseq}, we find
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{e^{-s}}{s(s^2+1)} \right\}
=
{\mathcal{L}}^{-1} \bigl\{
e^{-s}
\mathcal{L} \{ 1 - \cos t \}
\bigr\}
=
\bigl( 1 - \cos (t-1) \bigr) \, u(t-1) .
\end{equation*}
Similarly,
\begin{equation*}
{\mathcal{L}}^{-1} \left\{ \frac{e^{-5s}}{s(s^2+1)} \right\}
=
{\mathcal{L}}^{-1} \bigl\{
e^{-5s}
\mathcal{L} \{ 1 - \cos t \}
\bigr\}
=
\bigl( 1 - \cos (t-5) \bigr) \, u(t-5) .
\end{equation*}
Hence, the solution is
\begin{equation*}
x(t) =
\bigl( 1 - \cos (t-1) \bigr) \, u(t-1) -
\bigl( 1 - \cos (t-5) \bigr) \, u(t-5) .
\end{equation*}
The plot of this solution is given in \figurevref{lt:heavisideexfig}.
\begin{myfig}
\capstart
\diffyincludegraphics{width=3in}{width=4.5in}{lt-heavisideex}
\caption{Plot of $x(t)$.\label{lt:heavisideexfig}}
\end{myfig}
\end{example}
\subsection{Transfer functions}
The Laplace transform leads to the following useful concept for studying the
steady state behavior of a linear system. Consider an equation of the
form
\begin{equation*}
L x = f(t) ,
\end{equation*}
where $L$ is a linear constant coefficient differential operator.
Then $f(t)$ is usually thought of as input of the system and $x(t)$ is
thought of as the output of the system. For example, for a mass-spring
system the input is the forcing function and the output is the behavior of the
mass. We would like to have a convenient way to study the behavior of
the system for different inputs.
Let us suppose that
all the initial conditions are zero.
We take the Laplace transform of the equation to obtain the equation
\begin{equation*}
A(s) X(s) = F(s) .
\end{equation*}
Solving for the ratio $\nicefrac{X(s)}{F(s)}$, we obtain the so-called
\emph{\myindex{transfer function}}
$H(s) = \nicefrac{1}{A(s)}$,
that is,
\begin{equation*}
H(s) = \frac{X(s)}{F(s)} .
\end{equation*}
In other words, $X(s) = H(s) F(s)$. We obtain an algebraic dependence of
the output of the system based on the input. We can now easily study the
steady state behavior of the system given different inputs by simply
multiplying by the transfer function.
Moreover, it is possible to compute the $H(s)$ without knowing exactly what
the equation is by observing the output $X(s)$ for a given input $F(s)$.
Once $H(s)$ is known, you can find the output for any input.
\begin{example}
Given $x'' + \omega_0^2 x = f(t)$, let us find the transfer function
(assuming the initial conditions are zero).
First, we take the Laplace transform of the equation,
\begin{equation*}
s^2 X(s) + \omega_0^2 X(s) = F(s) .
\end{equation*}
Now we solve for the transfer function $\nicefrac{X(s)}{F(s)}$,
\begin{equation*}
H(s) = \frac{X(s)}{F(s)} = \frac{1}{s^2 + \omega_0^2} .
\end{equation*}
Let us see how to use the transfer function. Suppose we have the constant input
$f(t) = 1$. Hence $F(s) = \nicefrac{1}{s}$, and
\begin{equation*}
X(s) = H(s) F(s) = \frac{1}{s^2+\omega_0^2} \, \frac{1}{s} .
\end{equation*}
Taking the inverse Laplace transform of $X(s)$, we obtain
\begin{equation*}
x(t) = \frac{1-\cos(\omega_0 t)}{\omega_0^2} .
\end{equation*}
\end{example}
\subsection{Transforms of integrals}
A feature of Laplace transforms is that it is also able to easily deal
with integral equations. That is, equations in which integrals rather than
derivatives of functions appear. The basic property, which can be proved
by applying the definition and doing integration by parts, is
\begin{equation*}
\mybxbg{~~
\mathcal{L} \left\{
\int_0^t f(\tau) \, d\tau
\right\} = \frac{1}{s} \, F(s) .
~~}
\end{equation*}
It is sometimes useful (e.g.\ for computing the inverse transform) to write
this as
\begin{equation*}
\int_0^t f(\tau) \, d\tau
=
{\mathcal{L}}^{-1} \left\{
\frac{1}{s} \, F(s) \right\} .
\end{equation*}
\begin{example}
To compute ${\mathcal{L}}^{-1} \left\{\frac{1}{s(s^2+1)}\right\}$ we could
apply this integration rule:
\begin{equation*}
{\mathcal{L}}^{-1} \left\{
\frac{1}{s} \, \frac{1}{s^2+1} \right\}
=
\int_0^t
{\mathcal{L}}^{-1} \left\{
\frac{1}{s^2+1} \right\} \, d\tau
=
\int_0^t
\sin \tau \, d\tau
=
1 - \cos t .
\end{equation*}
\end{example}
\begin{example}
An equation containing an integral of the unknown function is
called an \emph{\myindex{integral equation}}.
Consider
\begin{equation*}
x(t) - t = \int_0^t x(\tau) \, d\tau ,
\end{equation*}
where we wish to solve for $x(t)$.
We apply the Laplace transform to get
\begin{equation*}
X(s) - \frac{1}{s^2} = \frac{1}{s} X(s) ,
\end{equation*}
where $X(s) = \mathcal{L} \bigl\{ x(t) \bigr\}$. Thus
\begin{equation*}
X(s) = \frac{1}{s(s-1)} = \frac{1}{s-1} - \frac{1}{s} .
\end{equation*}
The inverse Laplace transform gives
\begin{equation*}
x(t) = e^t - 1 .
\end{equation*}
%More complicated integral
%equations can also be solved using convolution, about which we will
%learn in the next section.
\end{example}
\subsection{Periodic functions}
The reader might ask: What about periodic functions as our input $f(t)$?
That is, a function $f(t)$ where $f(t) = f(t+P)$ for some constant $P$ (the period).
Well, let us compute $F(s)$:
\begin{equation*}
\begin{split}
F(s)
& = \int_0^\infty e^{-st} f(t) \, dt
= \int_0^P e^{-st} f(t) \, dt
+ \int_P^\infty e^{-st} f(t) \, dt
\\
& = \int_0^P e^{-st} f(t) \, dt
+ \int_0^\infty e^{-s(t+P)} f(t+P) \, dt
= \int_0^P e^{-st} f(t) \, dt
+ e^{-Ps} \int_0^\infty e^{-st} f(t) \, dt
\\
& = \int_0^P e^{-st} f(t) \, dt
+ e^{-Ps} F(s) .
\end{split}
\end{equation*}
Solving for $F(s)$, we get
\begin{equation*}
F(s)
=
\frac{1}{1-e^{-Ps}}
\int_0^P e^{-st} f(t) \, dt .
\end{equation*}