-
Notifications
You must be signed in to change notification settings - Fork 20
/
ch-eigenvalue-probs.tex
1345 lines (1222 loc) · 46.3 KB
/
ch-eigenvalue-probs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{More on eigenvalue problems} \label{SL:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Sturm--Liouville problems}
\label{slproblems:section}
%mbxINTROSUBSECTION
\sectionnotes{2 lectures\EPref{, \S10.1 in \cite{EP}}\BDref{,
\S11.2 in \cite{BD}}}
\subsection{Boundary value problems}
In \chapterref{FS:chapter}
we encountered several different eigenvalue problems such as:
\begin{equation*}
X''(x) + \lambda X(x) = 0 ,
\end{equation*}
with different boundary
conditions\index{Dirichlet boundary conditions}%
\index{Neumann boundary conditions}%
\index{Mixed boundary conditions}
\begin{equation*}
\begin{array}{rrl}
X(0) = 0 & ~~X(L) = 0 & ~~\text{(Dirichlet), or} \\
X'(0) = 0 & ~~X'(L) = 0 & ~~\text{(Neumann), or} \\
X'(0) = 0 & ~~X(L) = 0 & ~~\text{(Mixed), or} \\
X(0) = 0 & ~~X'(L) = 0 & ~~\text{(Mixed)}, \ldots
\end{array}
\end{equation*}
These boundary problems came up in the study of the heat equation $u_t =
k u_{xx}$ when we were trying to solve the equation by the method of
separation of variables in \sectionref{heateq:section}.
Dirichlet conditions correspond to applying a
zero temperature at the ends, Neumann means insulating the ends, etc.
Other types of endpoint conditions also arise naturally, such as
the \emph{\myindex{Robin boundary conditions}}
\begin{equation*}
hX(0) - X'(0) = 0, \qquad hX(L) + X'(L) = 0 ,
\end{equation*}
for some constant $h$. These conditions come up when the ends are immersed
in some medium.
In the separation of variables computation
we encountered an eigenvalue problem and found the
eigenfunctions
$X_n(x)$. We then found the \emph{\myindex{eigenfunction decomposition}} of
the initial
temperature $f(x) = u(x,0)$,
\begin{equation*}
f(x) = \sum_{n=1}^\infty c_n X_n(x) .
\end{equation*}
Once we had this decomposition
and found suitable $T_n(t)$ such that $T_n(0) = 1$
and such that $T_n(t)X_n(x)$ were solutions to the heat equation,
we wrote the solution to the original problem, including the initial
condition, as
\begin{equation*}
u(x,t) = \sum_{n=1}^\infty c_n T_n(t) X_n(x) .
\end{equation*}
\medskip
To study more general problems with this method, we must study
more general eigenvalue problems.
First, we study
second order linear equations of the form
\begin{equation} \label{SL:eq}
\frac{d}{dx} \left( p(x) \frac{dy}{dx} \right)
- q(x) y + \lambda r(x) y = 0 .
\end{equation}
Essentially
any second order linear equation
of the form $a(x) y'' + b(x) y' + c(x) y + \lambda d(x) y = 0$
can be written as \eqref{SL:eq}
after multiplying by a proper factor.
\begin{example}[Bessel]
Put the following equation into the form \eqref{SL:eq}:
\begin{equation*}
x^2 y'' + xy' + \left(\lambda x^2 - n^2\right)y = 0 .
\end{equation*}
Multiply both sides by $\frac{1}{x}$ to obtain
\begin{equation*}
\begin{split}
\frac{1}{x} \left( x^2 y'' + xy' + \left(\lambda x^2 - n^2\right)y \right)
& =
x y'' + y' + \left(\lambda x - \frac{n^2}{x}\right)y
\\
& =
\frac{d}{dx} \left( x \frac{dy}{dx} \right)
- \frac{n^2}{x} y + \lambda x y = 0.
\end{split}
\end{equation*}
The Bessel equation turns up for example in the solution of
the two-dimensional wave equation.
If you want to see how one solves the equation,
you can look at \subsectionref{bessel:subsection}.
\end{example}
The so-called
\emph{\myindex{Sturm--Liouville problem}}%
\footnote{Named after the French mathematicians
\href{https://en.wikipedia.org/wiki/Jacques_Charles_Fran\%C3\%A7ois_Sturm}{Jacques Charles Fran\c{c}ois Sturm}
(1803--1855) and
\href{https://en.wikipedia.org/wiki/Liouville}{Joseph Liouville}
(1809--1882).} is to seek
nontrivial solutions to
\begin{equation} \label{sl:slprob}
\mybxbg{~~
\begin{aligned}
&\frac{d}{dx} \left( p(x) \frac{dy}{dx} \right)
- q(x) y + \lambda r(x) y = 0, \qquad a < x < b, \\
&\alpha_1 y(a) - \alpha_2 y'(a) = 0, \\
&\beta_1 y(b) + \beta_2 y'(b) = 0.
\end{aligned}
~~}
\end{equation}
In particular, we seek $\lambda$s that allow for nontrivial solutions.
The $\lambda$s that admit nontrivial solutions
are called the \emph{eigenvalues\index{eigenvalue}}
and the corresponding
nontrivial solutions are called
\emph{eigenfunctions\index{eigenfunction}}.
The constants $\alpha_1$ and $\alpha_2$ should not be both zero, same for
$\beta_1$ and $\beta_2$.
\begin{theorem} \label{sl:slregthm}
Suppose $p(x)$, $p'(x)$, $q(x)$ and $r(x)$ are continuous on $[a,b]$
and suppose $p(x) > 0$ and $r(x) > 0$ for all $x$ in $[a,b]$.
Then the Sturm--Liouville problem \eqref{sl:slprob}
has an increasing sequence of eigenvalues
\begin{equation*}
\lambda_1 < \lambda_2 < \lambda_3 < \cdots
\end{equation*}
such that
\begin{equation*}
\lim_{n \to \infty} \lambda_n = +\infty
\end{equation*}
and such that to each $\lambda_n$ there is (up to a constant multiple)
a single eigenfunction $y_n(x)$.
Moreover, if $q(x) \geq 0$ and $\alpha_1, \alpha_2, \beta_1, \beta_2 \geq 0$,
then $\lambda_n \geq 0$ for all $n$.
\end{theorem}
Problems satisfying the hypothesis of the theorem
(including the \myquote{Moreover})
are called
\emph{regular Sturm--Liouville problems\index{regular Sturm--Liouville problem}}%
\index{Sturm--Liouville problem!regular},
and we will only consider such problems here.
That is, a regular problem is one where
$p(x)$, $p'(x)$, $q(x)$ and $r(x)$ are continuous, $p(x) > 0$, $r(x) > 0$,
$q(x) \geq 0$, and $\alpha_1, \alpha_2, \beta_1, \beta_2 \geq 0$,
where neither $\alpha_1$ and $\alpha_2$ are both zero,
nor
$\beta_1$ and $\beta_2$ are both zero.
Note: Be careful about the signs. Also be careful about the inequalities
for $r$ and $p$, they
must be strict for all $x$ in the interval $[a,b]$, including the endpoints!
When zero
is an eigenvalue, we usually
start labeling the eigenvalues at 0 rather than at 1 for convenience.
That is we label the eigenvalues $\lambda_0 < \lambda_1 < \lambda_2 < \cdots$.
\begin{example}
The problem $y''+\lambda y=0$, $0 < x < L$, $y(0) = 0$, and $y(L) = 0$
is a regular Sturm--Liouville problem: $p(x) = 1$, $q(x) = 0$, $r(x) = 1$,
and we have $p(x) = 1 > 0$ and $r(x) = 1 > 0$. We also have
$a=0$, $b=L$, $\alpha_1 = \beta_1 = 1$, $\alpha_2 = \beta_2 = 0$.
The eigenvalues are $\lambda_n = \frac{n^2 \pi^2}{L^2}$ and eigenfunctions
are $y_n(x) = \sin\bigl(\frac{n\pi}{L} x\bigr)$. All eigenvalues are nonnegative as
predicted by the theorem.
\end{example}
\begin{exercise}
Find eigenvalues and eigenfunctions for
\begin{equation*}
y'' + \lambda y = 0, \quad y'(0) = 0, \quad y'(1) = 0.
\end{equation*}
Identify
the $p, q, r, \alpha_j, \beta_j$.
Can you use the theorem above to make the search for eigenvalues easier?
Hint: Consider the condition $-y'(0)=0$.
\end{exercise}
\begin{example}
Find eigenvalues and eigenfunctions of the problem
\begin{align*}
& y''+\lambda y = 0, \quad 0 < x < 1 , \\
& hy(0)- y'(0) = 0, \quad y'(1) = 0, \quad h > 0.
\end{align*}
These equations give a regular Sturm--Liouville problem.
\begin{exercise}
Identify $p, q, r, \alpha_j, \beta_j$ in the example above.
\end{exercise}
By \thmref{sl:slregthm},
$\lambda \geq 0$.
So the general solution (without boundary conditions) is
\begin{equation*}
\begin{aligned}
& y(x) = A \cos ( \sqrt{\lambda}\, x) + B \sin (
\sqrt{\lambda}\, x) & & \qquad \text{if } \; \lambda > 0 , \\
& y(x) = A x + B & & \qquad \text{if } \; \lambda = 0 .
\end{aligned}
\end{equation*}
Let us see if $\lambda = 0$ is an eigenvalue:
We must satisfy $0 = hB - A$ and $A = 0$, hence $B=0$ (as $h > 0$).
Therefore, 0 is not an eigenvalue (no nonzero solution, so no eigenfunction).
Now let us
try $\lambda > 0$. We plug in the boundary conditions:
\begin{align*}
& 0 = h A - \sqrt{\lambda}\, B , \\
& 0 = -A \sqrt{\lambda}\, \sin (\sqrt{\lambda}) +B \sqrt{\lambda}\,
\cos (\sqrt{\lambda}) .
\end{align*}
If $A=0$, then $B=0$ and vice versa, hence both are nonzero.
So $B = \frac{hA}{\sqrt{\lambda}}$, and
$0 = -A \sqrt{\lambda}\, \sin ( \sqrt{\lambda}) + \frac{hA}{\sqrt{\lambda}}
\sqrt{\lambda}\, \cos ( \sqrt{\lambda})$. As $A \not= 0$ we get
\begin{equation*}
0 =
- \sqrt{\lambda}\, \sin ( \sqrt{\lambda}) + h \cos ( \sqrt{\lambda}) ,
\end{equation*}
or
\begin{equation*}
\frac{h}{\sqrt{\lambda}} = \tan \sqrt{\lambda} .
\end{equation*}
We use a computer to find $\lambda_n$. There are tables available,
though using a computer or a graphing calculator
is far more convenient nowadays.
Easiest method is to plot the functions
$\nicefrac{h}{x}$ and $\tan x$ and see for which $x$ they intersect.
There is an infinite number of intersections. Denote
the first intersection
by $\sqrt{\lambda_1}$,
the second intersection by $\sqrt{\lambda_2}$, etc.
For example, when
$h=1$, we get $\sqrt{\lambda_1} \approx 0.86$,
$\sqrt{\lambda_2} \approx 3.43$, \ldots.
That is $\lambda_1 \approx 0.74$, $\lambda_2 \approx 11.73$, \ldots.
A plot for $h=1$ is given in \figurevref{sl:tanx1overxfig}.
The appropriate eigenfunction
(let $A = 1$ for convenience, then
$B=\nicefrac{h}{\sqrt{\lambda}}$) is
\begin{equation*}
y_n(x) = \cos ( \sqrt{\lambda_n}\, x ) + \frac{h}{\sqrt{\lambda_n}}
\sin (\sqrt{\lambda_n} \, x ) .
\end{equation*}
When $h=1$ we get (approximately)
\begin{equation*}
y_1(x) \approx \cos (0.86\, x ) + \frac{1}{0.86}
\sin (0.86 \, x ) , \qquad
y_2(x) \approx \cos (3.43\, x ) + \frac{1}{3.43}
\sin (3.43 \, x ) , \qquad \ldots .
\end{equation*}
\begin{myfig}
\capstart
\diffyincludegraphics{width=3in}{width=4.5in}{sl-tanx1overx}
\caption{Plot of $\frac{1}{x}$ and $\tan x$.%
\label{sl:tanx1overxfig}}
\end{myfig}
\end{example}
\subsection{Orthogonality}
We have seen the notion of orthogonality before. For example,
we have shown that $\sin (nx)$ are orthogonal for distinct $n$ on $[0,\pi]$.
For general Sturm--Liouville problems we need a more general setup.
Let $r(x)$
be a \emph{\myindex{weight function}} (any function, though generally we
assume it is positive) on $[a,b]$. Two functions $f(x)$, $g(x)$
are said to be
\emph{orthogonal\index{orthogonal!with respect to a weight}}
with respect to the weight function
$r(x)$ when
\begin{equation*}
\int_a^b f(x) \, g(x) \, r(x) \,dx = 0 .
\end{equation*}
In this setting,
we define the \emph{inner product\index{inner product of functions}} as
\begin{equation*}
\langle f , g \rangle \overset{\text{def}}{=} \int_a^b f(x) \, g(x) \, r(x)
\,dx ,
\end{equation*}
and then say $f$ and $g$ are orthogonal whenever $\langle f , g \rangle = 0$.
The results and concepts are again analogous to
finite-dimensional linear algebra.
The idea of the given inner product is that those $x$ where $r(x)$
is greater have more weight.
Nontrivial (nonconstant)
$r(x)$ arise naturally, for example from a change of variables.
Hence, you could
think of a change of variables such that $d\xi = r(x)\, dx$.
Eigenfunctions of a
regular Sturm--Liouville problem satisfy an orthogonality property, just
like the eigenfunctions in \sectionref{bvp:section}.
Its proof is very similar to the analogous
\thmvref{bvp:orthogonaleigen}.
\begin{theorem}
Suppose we have a regular Sturm--Liouville problem
\begin{align*}
&\frac{d}{dx} \left( p(x) \frac{dy}{dx} \right)
- q(x) y + \lambda r(x) y = 0 , \\
&\alpha_1 y(a) - \alpha_2 y'(a) = 0 , \\
&\beta_1 y(b) + \beta_2 y'(b) = 0 .
\end{align*}
Let $y_j$ and $y_k$ be two distinct eigenfunctions for two
distinct eigenvalues $\lambda_j$ and $\lambda_k$. Then
\begin{equation*}
\int_a^b y_j(x) \, y_k(x) \, r(x) \,dx = 0,
\end{equation*}
that is, $y_j$ and $y_k$ are orthogonal with respect to the weight function
$r$.
\end{theorem}
\subsection{Fredholm alternative}
The \emph{Fredholm alternative} theorem we talked about before
(\thmvref{thm:fredholmsimple})
holds for all regular Sturm--Liouville problems.
We state it here for completeness.
\begin{theorem}[Fredholm alternative]%
\index{Fredholm alternative!Sturm--Liouville problems}
Suppose that we have a regular Sturm--Liouville problem.
Then either
\begin{align*}
&\frac{d}{dx} \left( p(x) \frac{dy}{dx} \right)
- q(x) y + \lambda r(x) y = 0 , \\
&\alpha_1 y(a) - \alpha_2 y'(a) = 0 , \\
&\beta_1 y(b) + \beta_2 y'(b) = 0 ,
\end{align*}
has a nonzero solution ($\lambda$ is an eigenvalue), or
\begin{align*}
&\frac{d}{dx} \left( p(x) \frac{dy}{dx} \right)
- q(x) y + \lambda r(x) y = f(x) , \\
&\alpha_1 y(a) - \alpha_2 y'(a) = 0 , \\
&\beta_1 y(b) + \beta_2 y'(b) = 0 ,
\end{align*}
has a unique solution for any $f(x)$ continuous on $[a,b]$.
\end{theorem}
This theorem is used in much the same way as we did before in
\sectionref{sec:scs}. It is used when solving more general nonhomogeneous
boundary value problems. The theorem does not help us solve the problem, but
it tells us when a unique solution exists, so
that we know when to spend time looking for it. To solve the problem
we decompose $f(x)$ and $y(x)$ in terms of eigenfunctions of the
homogeneous
problem, and then solve for the coefficients of the series for $y(x)$.
\subsection{Eigenfunction series}
What we want to do with the eigenfunctions once we have them is to
compute the \emph{\myindex{eigenfunction decomposition}} of an arbitrary
function $f(x)$. That is, we wish to write
\begin{equation} \label{sl:fdecomp}
f(x) = \sum_{n=1}^\infty c_n y_n(x) ,
\end{equation}
where $y_n(x)$ are eigenfunctions.
We wish to find out if we can represent
any function $f(x)$ in this way,
and if so, we wish to calculate the $c_n$ (and of course we would want to know if
the sum converges). OK\@, so imagine
we could write $f(x)$ as \eqref{sl:fdecomp}. We will assume convergence and
the ability to integrate the series term by term.
Because of orthogonality we have
\begin{equation*}
\begin{split}
\langle f , y_m \rangle
= \int_a^b f(x) \, y_m (x) \, r(x) \, dx
& = \int_a^b \left( \sum_{n=1}^\infty c_n y_n(x) \right) \, y_m (x) \, r(x)
\, dx\\
&= \sum_{n=1}^\infty c_n \int_a^b y_n(x) \, y_m (x) \, r(x) \, dx\\
&= c_m \int_a^b y_m(x) \, y_m (x) \, r(x) \, dx = c_m \langle y_m , y_m \rangle
.
\end{split}
\end{equation*}
Hence,
\begin{equation} \label{sl:cm}
\mybxbg{~~
c_m = \frac{\langle f , y_m \rangle}{\langle y_m , y_m \rangle}
=
\frac{\int_a^b f(x) \, y_m (x)\, r(x) \, dx}%
{\int_a^b {\bigl(y_m(x)\bigr)}^2 \, r(x) \,dx} .
~~}
\end{equation}
Note that $y_m$ are known up to a constant multiple, so we could have picked
a scalar multiple of an eigenfunction such that
$\langle y_m , y_m \rangle = 1$ (if we had an arbitrary eigenfunction
$\tilde{y}_m$, divide it
by $\sqrt{\langle \tilde{y}_m , \tilde{y}_m \rangle}$).
When
$\langle y_m , y_m \rangle = 1$,
we have the
simpler form $c_m = \langle f, y_m \rangle$.
% as we did for the Fourier series.
The following theorem holds
more generally, but the statement given is enough for our purposes.
\begin{theorem}
Suppose $f$ is a piecewise smooth continuous function on $[a,b]$. If $y_1,
y_2, \ldots$ are eigenfunctions of a regular Sturm--Liouville problem,
one for each eigenvalue,
then there exist real constants $c_1, c_2, \ldots$ given by \eqref{sl:cm}
such that
\eqref{sl:fdecomp} converges and holds for $a < x < b$.
\end{theorem}
\begin{example}
Consider
\begin{align*}
& y'' + \lambda y = 0, \quad 0 < x < \nicefrac{\pi}{2} , \\
& y(0) =0, \quad y'(\nicefrac{\pi}{2}) = 0 .
\end{align*}
The above is a regular Sturm--Liouville problem, and
\thmvref{sl:slregthm}
says that if $\lambda$ is an eigenvalue then
$\lambda \geq 0$.
Suppose $\lambda = 0$. The general solution is $y(x) = Ax + B$.
We plug in the
initial conditions to get $0=y(0) = B$, and $0 = y'(\nicefrac{\pi}{2}) = A$.
Hence $\lambda = 0$ is not an eigenvalue.
So let us consider $\lambda > 0$, where
the general solution is
\begin{equation*}
y(x) = A \cos ( \sqrt{\lambda} \, x ) + B \sin ( \sqrt{\lambda} \, x) .
\end{equation*}
Plugging in the boundary conditions we get
$0 = y(0) = A$ and $0 = y'(\nicefrac{\pi}{2})
= \sqrt{\lambda} \, B \cos \bigl(\sqrt{\lambda} \, \frac{\pi}{2}\bigr)$.
Since $A$ is zero, then
$B$ cannot be zero. Hence $\cos \bigl( \sqrt{\lambda} \,
\frac{\pi}{2}\bigr) = 0$.
This means that
$\sqrt{\lambda} \,\frac{\pi}{2}$ is an odd integral multiple of
$\nicefrac{\pi}{2}$,
i.e.\ $(2n-1)\frac{\pi}{2} = \sqrt{\lambda_n} \,\frac{\pi}{2}$.
Solving for $\lambda_n$ we get
\begin{equation*}
\lambda_n = {(2n-1)}^2 .
\end{equation*}
We can take $B = 1$. Our eigenfunctions are
\begin{equation*}
y_n(x) = \sin \bigl( (2n-1)x \bigr) .
\end{equation*}
A little bit of calculus shows
\begin{equation*}
\int_0^{\frac{\pi}{2}} {\Bigl( \sin \bigl( (2n-1)x \bigr) \Bigr)}^2 \, dx
= \frac{\pi}{4} .
\end{equation*}
So any piecewise smooth function $f(x)$ on $[0,\nicefrac{\pi}{2}]$ can be written as
\begin{equation*}
f(x) = \sum_{n=1}^\infty c_n \sin \bigl( (2n-1)x \bigr) ,
\end{equation*}
where
\begin{equation*}
c_n = \frac{\langle f , y_n \rangle}{\langle y_n , y_n \rangle}
= \frac{\int_0^{\frac{\pi}{2}} f(x) \, \sin \bigl( (2n-1)x \bigr) \, dx
}{\int_0^{\frac{\pi}{2}} {\Bigl(\sin \bigl((2n-1)x\bigr)\Bigr)}^2 \, dx}
= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} f(x) \,\sin \bigl( (2n-1)x \bigr) \, dx .
\end{equation*}
Note that the series converges to an odd $2\pi$-periodic
extension of $f(x)$. With the regular sine series, we would expect
a function with period $2 \, \frac{\pi}{2} = \pi$.
\begin{exercise}[challenging]
In the example above, the function is defined on $0 < x < \nicefrac{\pi}{2}$,
yet the series with respect to the eigenfunctions
$\sin \bigl( (2n-1)x \bigr)$ converges to an odd $2\pi$-periodic extension of $f(x)$.
Find out how is the extension defined for $\nicefrac{\pi}{2} < x < \pi$.
\end{exercise}
Let us compute an example.
Consider $f(x) = x$ for $0 < x < \nicefrac{\pi}{2}$. Some
calculus later we find
\begin{equation*}
c_n =
\frac{4}{\pi} \int_0^{\frac{\pi}{2}} f(x) \,\sin \bigl( (2n-1)x \bigr) \, dx
=
\frac{4{(-1)}^{n+1}}{\pi {(2n-1)}^2} ,
\end{equation*}
and so for $x$ in $[0,\nicefrac{\pi}{2}]$,
\begin{equation*}
f(x) = \sum_{n=1}^\infty \frac{4{(-1)}^{n+1}}{\pi {(2n-1)}^2}
\sin \bigl( (2n-1)x \bigr) .
\end{equation*}
This is different from the $\pi$-periodic regular sine series which can
be computed to be
\begin{equation*}
f(x) = \sum_{n=1}^\infty \frac{{(-1)}^{n+1}}{n} \sin ( 2nx ) .
\end{equation*}
Both sums converge are equal to $f(x)$ for $0 < x < \nicefrac{\pi}{2}$, but
the eigenfunctions involved come from different eigenvalue problems.
\end{example}
\subsection{Exercises}
\begin{exercise}
Find eigenvalues and eigenfunctions of
\begin{equation*}
y''+\lambda y = 0, \quad y(0)- y'(0) = 0, \quad y(1) = 0 .
\end{equation*}
\end{exercise}
\begin{exercise}
Expand the function $f(x) = x$ on $0 \leq x \leq 1$ using eigenfunctions
of the system
\begin{equation*}
y'' + \lambda y = 0, \quad y'(0) = 0, \quad y(1) = 0 .
\end{equation*}
\end{exercise}
\begin{exercise}
Suppose that you had a Sturm--Liouville problem on the interval
$[0,1]$ and came up with
$y_n(x) = \sin (\gamma n x)$, where $\gamma > 0$ is some constant.
Decompose $f(x) = x$, $0 < x < 1$ in terms of these eigenfunctions.
\end{exercise}
\begin{exercise}
Find eigenvalues and eigenfunctions of
\begin{equation*}
y^{(4)}+\lambda y = 0, \quad y(0) = 0, \quad y'(0) = 0, \quad y(1) = 0, \quad
y'(1) = 0 .
\end{equation*}
This problem is not a Sturm--Liouville problem, but the idea is the same.
\end{exercise}
\begin{exercise}[more challenging]
Find eigenvalues and eigenfunctions for
\begin{equation*}
\frac{d}{dx} (e^x y') + \lambda e^x y = 0, \quad y(0) = 0, \quad y(1) = 0 .
\end{equation*}
%Or at least set up the integrals you would need to solve.
Hint: First write the system as a constant coefficient system to find
general solutions. Do note that \thmvref{sl:slregthm} guarantees $\lambda \geq 0$.
\end{exercise}
\setcounter{exercise}{100}
\begin{exercise}
Find eigenvalues and eigenfunctions of
\begin{equation*}
y'' + \lambda y = 0, \quad y(-1) = 0, \quad y(1) = 0 .
\end{equation*}
\end{exercise}
\exsol{%
$\lambda_n = \frac{n^2\pi^2}{4}$, $n=1,2,3,\ldots$.
For odd $n$,
$y_n = \cos\left(\frac{n\pi}{2} x \right)$,
for even $n$,
$y_n = \sin\left(\frac{n\pi}{2} x \right)$.
}
\begin{exercise}
Put the following problems into the standard form for Sturm--Liouville
problems, that is, find $p(x)$, $q(x)$, $r(x)$,
$\alpha_1$,
$\alpha_2$,
$\beta_1$, and
$\beta_2$,
and decide if the problems are regular or not.
\begin{tasks}
\task $x y'' + \lambda y = 0$
\enspace for $0 < x < 1$,
\enspace $y(0) = 0$,
\enspace $y(1) = 0$.
\task
$(1+x^2) y'' + 2xy' + (\lambda-x^2) y = 0$
\enspace for $-1 < x < 1$,
\enspace $y(-1) = 0$,
\enspace $y(1)+y'(1) = 0$.\footnote{%
In an earlier version of this book, a typo rendered the equation
as $(1+x^2) y'' - 2xy' + (\lambda-x^2) y = 0$ ending up with something
harder than intended. Try this equation for a further challenge.}
\end{tasks}
\end{exercise}
\exsol{%
a)~$p(x) = 1$, $q(x) = 0$, $r(x) = \frac{1}{x}$, $\alpha_1 = 1$, $\alpha_2 =
0$, $\beta_1 = 1$, $\beta_2 = 0$. The problem is not regular.
b)~$p(x) = 1+x^2$, $q(x) = x^2$, $r(x) = 1$, $\alpha_1 = 1$, $\alpha_2 =
0$, $\beta_1 = 1$, $\beta_2 = 1$. The problem is regular.
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Higher order eigenvalue problems}
\label{sec:appeig}
\sectionnotes{1 lecture\EPref{, \S10.2 in \cite{EP}}\BDref{,
exercises in \S11.2 in \cite{BD}}}
The eigenfunction series can arise even from higher order equations.
Consider an elastic beam (say made of steel). We will study the
transversal vibrations of the beam. That is, suppose the beam lies along
the $x$-axis and let $y(x,t)$ measure the displacement of the point $x$
on the beam at time $t$. See \figurevref{appeig:transbeamfig}.
\begin{myfig}
\capstart
\inputpdft{trans-beam}
\caption{Transversal vibrations of a beam.\label{appeig:transbeamfig}}
\end{myfig}
The equation that governs this setup is
\begin{equation*}
a^4 \frac{\partial^4 y}{\partial x^4} + \frac{\partial^2 y}{\partial t^2} = 0,
\end{equation*}
for some constant $a > 0$, let us not worry about the physics\footnote{If
you are interested, $a^4 = \frac{EI}{\rho}$, where $E$ is the elastic
modulus, $I$ is the second moment of area of the cross section,
and $\rho$ is linear density.}.
Suppose the beam is of length 1 simply supported (hinged) at the ends.
The beam is displaced by some function $f(x)$ at time $t=0$ and then
let go (initial velocity is 0). Then $y$ satisfies:
\begin{equation} \label{appeig:beameq}
\begin{aligned}
& a^4 y_{xxxx} + y_{tt} = 0 \qquad (0 < x < 1, \enspace t > 0), \\
& y(0,t) = y_{xx}(0,t) = 0 , \\
& y(1,t) = y_{xx}(1,t) = 0 , \\
& y(x,0) = f(x), \qquad y_{t}(x,0) = 0 .
\end{aligned}
\end{equation}
Again we try $y(x,t) = X(x)T(t)$ and plug in to get
$a^4 X^{(4)}T + XT'' = 0$ or
\begin{equation*}
\frac{X^{(4)}}{X} = \frac{- T''}{a^4T} = \lambda .
\end{equation*}
The equations are
\begin{equation*}
T'' + \lambda a^4 T = 0, \qquad
X^{(4)} - \lambda X = 0 .
\end{equation*}
The boundary conditions
$y(0,t) = y_{xx}(0,t) = 0$ and $y(1,t) = y_{xx}(1,t) = 0$ imply
\begin{equation*}
X(0) = X''(0) = 0, \qquad \text{and} \qquad
X(1) = X''(1) = 0 .
\end{equation*}
The initial homogeneous condition $y_t(x,0) = 0$ implies
\begin{equation*}
T'(0) = 0 .
\end{equation*}
As usual, we leave the nonhomogeneous $y(x,0) = f(x)$ for later.
Considering the equation for $T$, that is,
$T'' + \lambda a^4 T = 0$, and physical intuition leads us
to the fact that if $\lambda$ is an eigenvalue then $\lambda > 0$:
We expect vibration and not exponential growth nor
decay in the $t$ direction (there is no friction in our model for instance).
So there are no negative eigenvalues.
Similarly $\lambda = 0$ is not an eigenvalue.
\begin{exercise}
Justify $\lambda > 0$ just from the equation for $X$ and the boundary
conditions.
\end{exercise}
Let $\omega = \sqrt[4]{\lambda}$, that is $\omega^4 = \lambda$,
to avoid writing the fourth root
all the time. Notice $\omega > 0$.
The general solution to
$X^{(4)} - \omega^4 X = 0$ is
\begin{equation*}
X(x) = A e^{\omega x} + B e^{-\omega x} + C \sin (\omega x) +
D \cos (\omega x) .
\end{equation*}
Now $0 = X(0) = A+B+D$, $0 = X''(0) = \omega^2 (A + B - D)$.
Solving,
$D = 0$ and $B = -A$.
So
\begin{equation*}
X(x) = A e^{\omega x} - A e^{-\omega x} + C \sin (\omega x) .
\end{equation*}
Also $0 = X(1) = A (e^{\omega} - e^{-\omega}) + C \sin \omega$, and
$0 = X''(1) = A \omega^2 (e^{\omega} - e^{-\omega}) - C \omega^2 \sin \omega$.
This means that $C \sin \omega = 0$ and
$A (e^{\omega} - e^{-\omega}) = 2 A \sinh \omega = 0$. If $\omega > 0$, then
$\sinh \omega \not= 0$ and so $A = 0$. Thus $C \not=0$, otherwise
$\lambda$ is not an
eigenvalue. Also, $\omega$ must be an integer multiple of
$\pi$. Hence $\omega = n \pi$ and $n \geq 1$ (as $\omega > 0$). We can take
$C=1$. So the eigenvalues are $\lambda_n = n^4 \pi^4$ and corresponding eigenfunctions
are $\sin (n \pi x)$.
Now
$T'' + n^4 \pi^4 a^4 T = 0$. The general solution is $T(t) =
A \sin (n^2 \pi^2 a^2 t) + B \cos (n^2 \pi^2 a^2 t)$. But $T'(0) = 0$ and hence
$A=0$. We take $B=1$ to make $T(0) = 1$ for convenience.
So our solutions are $T_n(t) = \cos (n^2 \pi^2 a^2 t)$.
The eigenfunctions are just the sines, so we decompose the function $f(x)$
using the sine series. That is,
we find numbers $b_n$ such that for
$0 < x < 1$,
\begin{equation*}
f(x) = \sum_{n=1}^\infty b_n \sin (n \pi x) .
\end{equation*}
Then the solution to \eqref{appeig:beameq} is
\begin{equation*}
y(x,t) = \sum_{n=1}^\infty b_n
X_n(x) T_n(t)
= \sum_{n=1}^\infty b_n
\sin (n \pi x) \cos ( n^2 \pi^2 a^2 t ) .
\end{equation*}
The point is that $X_nT_n$ is a solution that satisfies all the homogeneous
conditions (all conditions except the initial position). And since
$T_n(0) = 1$,
\begin{equation*}
y(x,0) = \sum_{n=1}^\infty b_n X_n(x) T_n(0) =
\sum_{n=1}^\infty b_n X_n(x) =
\sum_{n=1}^\infty b_n
\sin (n \pi x) = f(x) .
\avoidbreak
\end{equation*}
So $y(x,t)$ solves \eqref{appeig:beameq}.
The natural (angular) frequencies of the system are $n^2 \pi^2 a^2$.
These frequencies are all integer multiples of the fundamental frequency
$\pi^2 a^2$, so we get a nice musical note. The exact frequencies
and their amplitude
are what musicians call the \emph{\myindex{timbre}} of the note (outside
of music it is called the spectrum).
The timbre of a beam
is different than for a vibrating string where we get \myquote{more}
of the lower frequencies since we get all integer multiples,
$1,2,3,4,5,\ldots$. For a steel beam we get
only the square multiples $1,4,9,16,25,\ldots$. That is why when you hit a
steel beam you hear a very pure sound. The sound of a
xylophone or vibraphone is, therefore, very different from a guitar or piano.
\begin{example}
Consider $f(x) = \frac{x(x-1)}{10}$.
On $0 < x < 1$ (you know how to do this by now)
\begin{equation*}
f(x) = \sum_{\substack{n=1\\n \text{~odd}}}^\infty \frac{4}{5\pi^3 n^3}
\sin (n \pi x) .
\end{equation*}
Hence, the solution to \eqref{appeig:beameq} with the given initial
position $f(x)$ is
\begin{equation*}
y(x,t) = \sum_{\substack{n=1\\n \text{~odd}}}^\infty \frac{4}{5\pi^3 n^3}
\sin (n \pi x) \cos ( n^2 \pi^2 a^2 t ) .
\end{equation*}
\end{example}
There are other boundary conditions than just hinged ends. There are
three basic possibilities: hinged, free, or fixed. Let us consider
the end at $x=0$. For the other end, it is the same idea.
If the end is \emph{hinged}\index{hinged end of beam}, then
\begin{equation*}
u(0,t) = u_{xx}(0,t) = 0 .
\end{equation*}
If the end is \emph{free}\index{free end of beam}, that is, it is just
floating in air, then
\begin{equation*}
u_{xx}(0,t) = u_{xxx}(0,t) = 0 .
\end{equation*}
And finally, if the end is
\emph{clamped}\index{clamped end of beam}
or
\emph{fixed}\index{fixed end of beam}, for example it is welded to a
wall,
then
\begin{equation*}
u(0,t) = u_{x}(0,t) = 0 .
\end{equation*}
\subsection{Exercises}
\begin{exercise}
Suppose you have a beam of length 5 with free ends. Let $y$ be the
transverse deviation of the beam at position $x$ on the beam ($0 < x < 5$).
You know that the
constants are such that this satisfies the equation $y_{tt} + 4 y_{xxxx} =
0$. Suppose you know that the initial shape of the beam is the graph of
$x(5-x)$, and the initial velocity is uniformly equal to 2 (same for each $x$)
in the positive $y$ direction. Set up the equation together with the
boundary and initial conditions. Just set up, do not solve.
\end{exercise}
\begin{exercise}
Suppose you have a beam of length 5 with one end free and one end fixed
(the fixed end is at $x=5$).
Let $u$ be the
longitudinal deviation of the beam at position $x$ on the beam ($0 < x < 5$).
You know that the
constants are such that this satisfies the equation $u_{tt} = 4 u_{xx}$.
Suppose you know that the initial displacement of the beam
is $\frac{x-5}{50}$, and the initial velocity is $\frac{-(x-5)}{100}$
in the positive $u$ direction. Set up the equation together with the
boundary and initial conditions. Just set up, do not solve.
\end{exercise}
\begin{exercise}
Suppose the beam is $L$ units long, everything else kept the same
as in \eqref{appeig:beameq}. What is the equation and the series
solution?
\end{exercise}
\begin{exercise}
Suppose you have
\begin{equation*}
\begin{aligned}
& a^4 y_{xxxx} + y_{tt} = 0 \quad (0 < x < 1, t > 0) , \\
& y(0,t) = y_{xx}(0,t) = 0,\\
& y(1,t) = y_{xx}(1,t) = 0 ,\\
& y(x,0) = f(x), \quad y_{t}(x,0) = g(x) .
\end{aligned}
\end{equation*}
That is, you have also an initial velocity. Find a series solution. Hint:
Use the same idea as we did for the wave equation.
\end{exercise}
\setcounter{exercise}{100}
\begin{exercise}
Suppose you have a beam of length 1 with hinged ends. Let $y$ be the
transverse deviation of the beam at position $x$ on the beam ($0 < x < 1$).
You know that the
constants are such that this satisfies the equation $y_{tt} + 4 y_{xxxx} =
0$. Suppose you know that the initial shape of the beam is the graph of
$\sin (\pi x)$, and the initial velocity is 0. Solve for $y$.
\end{exercise}
\exsol{%
$y(x,t) = \sin(\pi x) \cos (2 \pi^2 t)$
}
\begin{exercise}
Suppose you have a beam of length 10 with two fixed ends. Let $y$ be the
transverse deviation of the beam at position $x$ on the beam ($0 < x < 10$).
You know that the
constants are such that this satisfies the equation $y_{tt} + 9 y_{xxxx} =
0$. Suppose you know that the initial shape of the beam is the graph of
$\sin(\pi x)$, and the initial velocity is uniformly equal to $x(10-x)$.
Set up the equation together with the
boundary and initial conditions. Just set up, do not solve.
\end{exercise}
\exsol{%
$9 y_{xxxx} + y_{tt} = 0 \quad (0 < x < 10, t > 0)$, \quad
$y(0,t) = y_{x}(0,t) = 0$, \quad
$y(10,t) = y_{x}(10,t) = 0$, \quad
$y(x,0) = \sin(\pi x), \quad y_{t}(x,0) = x(10-x)$.
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Steady periodic solutions}
\label{sps:section}
%mbxINTROSUBSECTION
\sectionnotes{1--2 lectures\EPref{, \S10.3 in \cite{EP}}\BDref{,
not in \cite{BD}}}
\subsection{Forced vibrating string}
Consider a guitar string of length $L$. We studied this
setup in \sectionref{we:section}.
Let $x$ be the position on the string, $t$ the time, and $y$ the displacement of the string. See
\figurevref{sps:vibstrfig}.
\begin{myfig}
\capstart
\inputpdft{sps-vibstr}
\caption{Vibrating string.\label{sps:vibstrfig}}
\end{myfig}
The problem is governed by the wave equation
\begin{equation} \label{sps:freevib}
\begin{array}{ll}
y_{tt} = a^2 y_{xx} , & \\
\noalign{\smallskip}
y(0,t) = 0 , & y(L,t) = 0 , \\
y(x,0) = f(x) , & y_t(x,0) = g(x) .
\end{array}
\end{equation}
We found that the solution is of the form
\begin{equation*}
y =
\sum_{n=1}^\infty \left( A_n \cos \left( \frac{n\pi a}{L} t \right) +
B_n \sin \left( \frac{n\pi a}{L} t \right) \right)
\sin \left( \frac{n\pi}{L} x \right) ,
\end{equation*}
where $A_n$ and $B_n$ are determined by the initial conditions. The natural
frequencies of the system are the (angular) frequencies $\frac{n \pi a}{L}$
for integers $n \geq 1$.
But these are free vibrations. What if there is an external force acting on
the string. Let us assume say air vibrations (noise), for example from a second
string. Or perhaps a jet engine. For simplicity, assume nice pure
sound and assume the force is uniform at every position on the string:
The external force as a function of time $t$ is given as
$F_0 \cos (\omega t)$ as force per unit mass, we will call this
the forcing function. Then our wave
equation becomes (remember force is mass times acceleration)
\begin{equation} \label{sps:forcedeq}
y_{tt} = a^2 y_{xx} + F_0 \cos ( \omega t) ,
\end{equation}
with the same boundary conditions of course.
We want to find the solution here that satisfies the equation above and
\begin{equation} \label{sps:forcedinitcond}
y(0,t) = 0, \qquad y(L,t) = 0, \qquad
y(x,0) = 0, \qquad y_t(x,0) = 0.
\end{equation}
That is, the string is initially at rest. First we find a particular
solution $y_p$ of \eqref{sps:forcedeq} that satisfies
$y(0,t) = y(L,t) = 0$. We define the functions $f$ and $g$ as
\begin{equation*}
f(x) = -y_p(x,0), \qquad g(x) = -\frac{\partial y_p}{\partial t} (x,0) .
\end{equation*}
We then find solution $y_c$ of \eqref{sps:freevib}. If we add the two
solutions, we find that $y = y_c + y_p$ solves \eqref{sps:forcedeq} with
the initial conditions.
\begin{exercise}
Check that $y = y_c + y_p$ solves \eqref{sps:forcedeq} and the
side conditions \eqref{sps:forcedinitcond}.
\end{exercise}
So the big issue here is to find the particular solution $y_p$.
We look at the equation and we make an educated guess
\begin{equation*}
y_p(x,t) = X(x) \cos (\omega t) .
\end{equation*}
We plug in to get
\begin{equation*}
-\omega^2 X \cos ( \omega t) = a^2 X'' \cos ( \omega t) +
F_0 \cos ( \omega t ) ,
\end{equation*}
or
$-\omega^2 X = a^2 X'' + F_0$ after canceling the cosine.
We know how to find a general solution to this equation (it is a
nonhomogeneous constant coefficient equation).
The general solution is
\begin{equation*}
X(x) = A \cos \left( \frac{\omega}{a} x \right)
+ B \sin \left( \frac{\omega}{a} x \right) -
\frac{F_0}{\omega^2} .
\end{equation*}
The endpoint conditions imply $X(0) = X(L) = 0$. So
\begin{equation*}
0 = X(0) = A - \frac{F_0}{\omega^2} ,
\end{equation*}
or $A = \frac{F_0}{\omega^2}$, and also
\begin{equation*}
0 = X(L)
= \frac{F_0}{\omega^2} \cos \left( \frac{\omega L}{a} \right)
+ B \sin \left( \frac{\omega L}{a} \right) -
\frac{F_0}{\omega^2} .
\end{equation*}
Assuming that $\sin ( \frac{\omega L}{a} )$ is not zero we can solve for $B$ to
get
\begin{equation} \label{natfreq:Beq}
B =
\frac{-F_0 \left( \cos \left( \frac{\omega L}{a} \right) - 1 \right)}%
{\omega^2 \sin \left( \frac{\omega L}{a} \right)}.
\end{equation}
Therefore,
\begin{equation*}
X(x) =
\frac{F_0}{\omega^2} \left(
\cos \left( \frac{\omega}{a} x \right) -
\frac{\cos \left( \frac{\omega L}{a} \right) - 1}%
{\sin \left( \frac{\omega L}{a} \right)}
\sin \left( \frac{\omega}{a} x \right)
- 1
\right) .
\end{equation*}
The particular solution $y_p$ we are looking for is
\begin{equation*}
\mybxbg{~~
y_p(x,t) =