diff --git a/ca.tex b/ca.tex index 627a7bc..f2a3ea1 100644 --- a/ca.tex +++ b/ca.tex @@ -14345,7 +14345,7 @@ \subsection{Mean-value property} \begin{exercise} Suppose $U \subset \C$ is open, $f \colon U \to \R$ is continuous, $p \in U$ -and $f$ is harmonic on $U \setminus \{ p \}$. Prove that $f$ is in fact +and $f$ is harmonic on $U \setminus \{ p \}$. Prove that $f$ is, in fact, harmonic on all of $U$. \end{exercise} @@ -14604,7 +14604,7 @@ \subsection{Harnack's inequality} Let $U = \{z \in \C : -s < \Re z < s, -1 < \Im z < 1 \}$. Compute an explicit constant $C$ (doesn't need to be optimal) -for this following $K$ for the general +for the following $K$ for the general Harnack's inequality: \smallskip \begin{expartshor}{2} @@ -15056,7 +15056,7 @@ \subsection{Schwarz reflection principle} $f \colon \partial \D \setminus S \to \R$ is continuous and bounded. By \exerciseref{exercise:dirichDwithsings}, a continuous $g \colon \overline{\D} \setminus S \to \R$ harmonic in $\D$ exists such that $g=f$ on -$\partial D \setminus S$. Prove that there is a unique such bounded $g$. +$\partial \D \setminus S$. Prove that there is a unique such bounded $g$. Hint: Part a) and Cayley. \end{exparts} \end{exercise}