-
Notifications
You must be signed in to change notification settings - Fork 4
/
ca.tex
23904 lines (21603 loc) · 794 KB
/
ca.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,openany]{book}
%FIXME: for PRINT run for lulu or kdp, search for %PRINT
%\usepackage{pdf14}
\usepackage[shortlabels,inline]{enumitem}
\usepackage{ifpdf}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{chngcntr}
\usepackage{titlesec}
\usepackage{import}
\usepackage{vogtwidebar}
\usepackage{nicefrac}
\usepackage{mathdots}
\usepackage{microtype}
\usepackage{cancel}
\usepackage{framed}
\usepackage{varioref}
\usepackage{faktor}
\usepackage{tabto}
\usepackage{tikz}
\usetikzlibrary{cd}
\usepackage{rotating}
\usepackage{cellspace}
\usepackage[toc,nopostdot,sort=use,automake]{glossaries}
%Palatino
\usepackage[theoremfont]{newpxtext}
\usepackage[vvarbb]{newpxmath}
\linespread{1.05}
\usepackage[scr=boondoxo]{mathalfa} % but we want the nice fancy script fonts
\usepackage[T1]{fontenc}
%symmetric for web
\usepackage[inner=1.2in,outer=1.2in,top=1in,bottom=1in]{geometry}
%PRINT asymetric for book
%\usepackage[inner=1.4in,outer=1.0in,top=1in,bottom=1in]{geometry}
\usepackage[margin=10pt,font=small,labelfont=bf,labelsep=colon,singlelinecheck=false]{caption}
%PRINT
% (not for the coil version or any version other than crown quatro using the
% ghostscript conversion)
%Now cut page size a bit. I'll run it through ghostcript anyway
%to convert to the right size, but this is good for crown quatro
%conversion, don't use for the full letter size versions
%\addtolength{\paperwidth}{-0.25in}
%\addtolength{\paperheight}{-0.5in}
%\addtolength{\topmargin}{-0.13in}
%\addtolength{\oddsidemargin}{-0.125in}
%\addtolength{\evensidemargin}{-0.125in}
\usepackage{url}
\usepackage{imakeidx}
\PassOptionsToPackage{hyphens}{url}
\usepackage{hyperref} % do NOT set [ocgcolorlinks] here!
%If you have an older tex installation you might need
%to comment out the next line:
%PRINT (COMMENT OUT FOR PRINT)
\usepackage[ocgcolorlinks]{ocgx2} %perhaps run without for lulu/kdp
%\usepackage[all]{hypcap} % handled by caption
\usepackage[shortalphabetic,msc-links]{amsrefs}
%\usepackage{draftwatermark}
%\SetWatermarkText{Work in progress! Draft as of \today. May change substantially!}
%\SetWatermarkAngle{90}
%\SetWatermarkHorCenter{0.5in}
%\SetWatermarkColor[gray]{0.7}
%\SetWatermarkScale{0.16}
%\SetWatermarkScale{0.18}
\definecolor{gray75}{gray}{0.75}
\titleformat{\chapter}[hang]{\Huge\bfseries\filleft}%
{\thechapter$i$\hspace*{10pt}{\textcolor{gray75}{$\backslash\!\!\backslash$}}}%
{10pt}%
{}
[\vspace{-1ex}\rule{0.5\textwidth}{0.5pt}\rule{0.5\textwidth}{1pt}]
\titleformat{\section}[hang]{\Large\bfseries}%
{\thesection$i$\hspace*{10pt}{\textcolor{gray75}{$\backslash$}}}%
{10pt}%
{}%
\titleformat{\subsection}[hang]{\large\bfseries}%
{\thesubsection$i$\hspace*{10pt}{\textcolor{gray75}{$\cdot$}}}%
{10pt}%
{}%
\assignpagestyle{\chapter}{empty}
% Footnotes should use symbols, not numbers. Numbered footnotes are
% evil, (footmisc no longer conflicts with hyperref)
\usepackage[perpage,symbol*]{footmisc}
\usepackage{footnote}
% Enumitem extra penalties
\setlist[enumerate]{beginpenalty=100,midpenalty=-5}
% discourage pagebreak at end of display, put before \end{equation}
\newcommand{\avoidbreak}{\postdisplaypenalty=100}
\clubpenalty=500
\widowpenalty=500
%\overfullrule=10mm
% useful
\newcommand{\ignore}[1]{}
% analysis/geometry stuff
\newcommand{\ann}{\operatorname{ann}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\Orb}{\operatorname{Orb}}
\newcommand{\hol}{\operatorname{hol}}
\newcommand{\aut}{\operatorname{aut}}
\newcommand{\Aut}{\operatorname{Aut}}
\newcommand{\codim}{\operatorname{codim}}
\newcommand{\sing}{\operatorname{sing}}
\newcommand{\ord}{\operatorname{ord}}
\newcommand{\dist}{\operatorname{dist}}
\newcommand{\Arg}{\operatorname{Arg}}
\newcommand{\Log}{\operatorname{Log}}
% reals
\newcommand{\esssup}{\operatorname{ess~sup}}
\newcommand{\essran}{\operatorname{essran}}
\newcommand{\innprod}[2]{\langle #1 | #2 \rangle}
\newcommand{\linnprod}[2]{\langle #1 , #2 \rangle}
\newcommand{\blinnprod}[2]{\bigl\langle #1 , #2 \bigr\rangle}
\newcommand{\supp}{\operatorname{supp}}
\newcommand{\Nul}{\operatorname{Nul}}
\newcommand{\Ran}{\operatorname{Ran}}
\newcommand{\sabs}[1]{\lvert {#1} \rvert}
\newcommand{\snorm}[1]{\lVert {#1} \rVert}
\newcommand{\babs}[1]{\bigl\lvert {#1} \bigr\rvert}
\newcommand{\bnorm}[1]{\bigl\lVert {#1} \bigr\rVert}
\newcommand{\Babs}[1]{\Bigl\lvert {#1} \Bigr\rvert}
\newcommand{\Bnorm}[1]{\Bigl\lVert {#1} \Bigr\rVert}
\newcommand{\bbabs}[1]{\biggl\lvert {#1} \biggr\rvert}
\newcommand{\bbnorm}[1]{\biggl\lVert {#1} \biggr\rVert}
\newcommand{\BBabs}[1]{\Biggl\lvert {#1} \Biggr\rvert}
\newcommand{\BBnorm}[1]{\Biggl\lVert {#1} \Biggr\rVert}
\newcommand{\abs}[1]{\left\lvert {#1} \right\rvert}
\newcommand{\norm}[1]{\left\lVert {#1} \right\rVert}
% sets (some)
\newcommand{\C}{{\mathbb{C}}}
\newcommand{\R}{{\mathbb{R}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\N}{{\mathbb{N}}}
\newcommand{\Q}{{\mathbb{Q}}}
\newcommand{\D}{{\mathbb{D}}}
\newcommand{\F}{{\mathbb{F}}}
% consistent
\newcommand{\bB}{{\mathbb{B}}}
\newcommand{\bC}{{\mathbb{C}}}
\newcommand{\bR}{{\mathbb{R}}}
\newcommand{\bZ}{{\mathbb{Z}}}
\newcommand{\bN}{{\mathbb{N}}}
\newcommand{\bQ}{{\mathbb{Q}}}
\newcommand{\bD}{{\mathbb{D}}}
\newcommand{\bF}{{\mathbb{F}}}
\newcommand{\bH}{{\mathbb{H}}}
\newcommand{\bO}{{\mathbb{O}}}
\newcommand{\bP}{{\mathbb{P}}}
\newcommand{\bK}{{\mathbb{K}}}
\newcommand{\bV}{{\mathbb{V}}}
\newcommand{\CP}{{\mathbb{CP}}}
\newcommand{\RP}{{\mathbb{RP}}}
\newcommand{\HP}{{\mathbb{HP}}}
\newcommand{\OP}{{\mathbb{OP}}}
\newcommand{\sA}{{\mathscr{A}}}
\newcommand{\sB}{{\mathscr{B}}}
\newcommand{\sC}{{\mathscr{C}}}
\newcommand{\sF}{{\mathscr{F}}}
\newcommand{\sG}{{\mathscr{G}}}
\newcommand{\sH}{{\mathscr{H}}}
\newcommand{\sM}{{\mathscr{M}}}
\newcommand{\sO}{{\mathscr{O}}}
\newcommand{\sP}{{\mathscr{P}}}
\newcommand{\sQ}{{\mathscr{Q}}}
\newcommand{\sR}{{\mathscr{R}}}
\newcommand{\sS}{{\mathscr{S}}}
\newcommand{\sI}{{\mathscr{I}}}
\newcommand{\sL}{{\mathscr{L}}}
\newcommand{\sK}{{\mathscr{K}}}
\newcommand{\sU}{{\mathscr{U}}}
\newcommand{\sV}{{\mathscr{V}}}
\newcommand{\sX}{{\mathscr{X}}}
\newcommand{\sY}{{\mathscr{Y}}}
\newcommand{\sZ}{{\mathscr{Z}}}
\newcommand{\fS}{{\mathfrak{S}}}
\newcommand{\interior}{\operatorname{int}}
% Topo stuff
\newcommand{\id}{\textit{id}}
\newcommand{\im}{\operatorname{im}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Tor}{\operatorname{Tor}}
\newcommand{\Torsion}{\operatorname{Torsion}}
\newcommand{\Ext}{\operatorname{Ext}}
\newcommand{\Hom}{\operatorname{Hom}}
%extra thingies
%\newcommand{\mapsfrom}{\ensuremath{\text{\reflectbox{$\mapsto$}}}}
\newcommand{\from}{\ensuremath{\leftarrow}}
\newcommand{\dhat}[1]{\hat{\hat{#1}}}
\definecolor{mypersianblue}{rgb}{0.11, 0.22, 0.73}
\hypersetup{
pdfborderstyle={/S/U/W 0.5}, %this just in case ocg isn't there
%PRINT (for print use the below and comment out the above):
%pdfborder={0 0 0},
citecolor=mypersianblue,
filecolor=mypersianblue,
linkcolor=mypersianblue,
urlcolor=mypersianblue,
pdftitle={Guide to Cultivating Complex Analysis},
pdfsubject={Complex Analysis},
pdfkeywords={one complex variable, complex analysis},
pdfauthor={Jiri Lebl}
}
% Set up our index
\makeindex
% Very simple indexing
\newcommand{\myindex}[1]{#1\index{#1}}
% Quotes
\newcommand{\myquote}[1]{``#1''}
\author{Ji\v{r}\'i Lebl}
\title{Guide to Cultivating Complex Analysis}
% Don't include subsections
\setcounter{tocdepth}{1}
% Better "outline"
%\setcounter{tocdepth}{2}
\theoremstyle{plain}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lemma}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{claim}[thm]{Claim}
\theoremstyle{remark}
\newtheorem{remark}[thm]{Remark}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheoremstyle{exercise}% name
{}% Space above
{}% Space below
{\itshape}% Body font
{}% Indent amount 1
{\bfseries \itshape}% Theorem head font
{:}% Punctuation after theorem head
{.5em}% Space after theorem head 2
{}% Theorem head spec (can be left empty, meaning "normal")
% FIXME: Don't know if we should do this. It is not as straightforward
%of a decision as it seems
% FIXME: It is also not finished in marking, chapter 1 till 1.4 is done
%\newcommand{\neededexmark}{$\blacklozenge$}
%\newcommand{\optneededexmark}{$\lozenge$}
\newenvironment{exbox}{%
\def\FrameCommand{\vrule width 1pt \relax\hspace{10pt}}%
\MakeFramed{\advance\hsize-\width\FrameRestore}%
}{%
\endMakeFramed
}
\newenvironment{exparts}{%
\leavevmode\begin{enumerate}[a),noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt]
}{%
\end{enumerate}
}
\newenvironment{exnumparts}{%
\leavevmode\begin{enumerate}[1),noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt]
}{%
\end{enumerate}
}
\newenvironment{expartshor}[1]{%
\begingroup%
\NumTabs{#1}%
\leavevmode%
\par%
\begin{enumerate*}[a),itemjoin={\tab}]
}{%
\end{enumerate*}\endgroup\par
}
\newenvironment{myfig}{%
\begin{figure}[h!t]
\noindent\rule{\textwidth}{0.5pt}\vspace{12pt}\par\centering}%
{\par\noindent\rule{\textwidth}{0.5pt}
\end{figure}}
\newenvironment{myepigraph}{%
\begin{quote}%
\begingroup\itshape
}{%
\endgroup%
\end{quote}
}
\theoremstyle{exercise}
\newtheorem{exercise}{Exercise}[section]
\newtheoremstyle{example}% name
{}% Space above
{}% Space below
{}% Body font
{}% Indent amount 1
{\bfseries}% Theorem head font
{:}% Punctuation after theorem head
{.5em}% Space after theorem head 2
{}% Theorem head spec (can be left empty, meaning "normal")
\theoremstyle{example}
\newtheorem{example}[thm]{Example}
% referencing
\newcommand{\figureref}[1]{\hyperref[#1]{Figure~\ref*{#1}}}
\newcommand{\tableref}[1]{\hyperref[#1]{Table~\ref*{#1}}}
\newcommand{\chapterref}[1]{\hyperref[#1]{chapter~\ref*{#1}}}
\newcommand{\Chapterref}[1]{\hyperref[#1]{Chapter~\ref*{#1}}}
\newcommand{\Chdotref}[1]{\hyperref[#1]{Ch.~\ref*{#1}}}
\newcommand{\appendixref}[1]{\hyperref[#1]{appendix~\ref*{#1}}}
\newcommand{\Appendixref}[1]{\hyperref[#1]{Appendix~\ref*{#1}}}
\newcommand{\sectionref}[1]{\hyperref[#1]{section~\ref*{#1}}}
\newcommand{\subsectionref}[1]{\hyperref[#1]{\S~\ref*{#1}}}
\newcommand{\exerciseref}[1]{\hyperref[#1]{Exercise~\ref*{#1}}}
\newcommand{\exampleref}[1]{\hyperref[#1]{Example~\ref*{#1}}}
\newcommand{\thmref}[1]{\hyperref[#1]{Theorem~\ref*{#1}}}
\newcommand{\propref}[1]{\hyperref[#1]{Proposition~\ref*{#1}}}
\newcommand{\lemmaref}[1]{\hyperref[#1]{Lemma~\ref*{#1}}}
\newcommand{\corref}[1]{\hyperref[#1]{Corollary~\ref*{#1}}}
\newcommand{\defnref}[1]{\hyperref[#1]{Definition~\ref*{#1}}}
\newcommand{\remarkref}[1]{\hyperref[#1]{Remark~\ref*{#1}}}
% List of Symbols/Notation
% rubber: depend notations.tex
\loadglsentries{notations}
\makeglossaries
\begin{document}
\ifpdf
\pdfbookmark{Title Page}{title}
\fi
\newlength{\centeroffset}
\setlength{\centeroffset}{-0.5\oddsidemargin}
\addtolength{\centeroffset}{0.5\evensidemargin}
%\addtolength{\textwidth}{-\centeroffset}
\thispagestyle{empty}
\vspace*{\stretch{1}}
\noindent\hspace*{\centeroffset}\makebox[0pt][l]{\begin{minipage}{\textwidth}
\flushright
{\Huge\bfseries \sffamily Guide to Cultivating Complex Analysis}
\noindent\rule[-1ex]{\textwidth}{5pt}\\[2.5ex]
\hfill\emph{\Large \sffamily Working the Complex Field}
\end{minipage}}
\vspace{\stretch{1}}
\noindent\hspace*{\centeroffset}\makebox[0pt][l]{\begin{minipage}{\textwidth}
\flushright
{\bfseries
%by
Ji{\v r}\'i Lebl\\[3ex]}
\today
\\
(version 1.6)
\end{minipage}}
%\addtolength{\textwidth}{\centeroffset}
\vspace{\stretch{2}}
\pagebreak
\vspace*{\fill}
%\begin{small}
\noindent
Typeset in \LaTeX.
\bigskip
\noindent
Copyright \copyright 2019--2024 Ji{\v r}\'i Lebl
%PRINT
% not for the coil version
%\noindent
%ISBN 979-8-6850-5792-1
%PRINT
% not for lulu
%\medskip
%\noindent
%Cover image: Field in South Czechia, \copyright 2008 Ji{\v r}\'i Lebl, all rights reserved. Cover
%image cannot be reused in derivative works.
\bigskip
%\begin{floatingfigure}{1.4in}
%\vspace{-0.05in}
\noindent
\includegraphics[width=1.38in]{figures/license}
\quad
\includegraphics[width=1.38in]{figures/license2}
%\end{floatingfigure}
\bigskip
\noindent
\textbf{License:}
\\
This work is dual licensed under
the Creative Commons
Attribution-Non\-commercial-Share Alike 4.0 International License and
the Creative Commons
Attribution-Share Alike 4.0 International License.
To view a
copy of these licenses, visit
\url{https://creativecommons.org/licenses/by-nc-sa/4.0/}
or
\url{https://creativecommons.org/licenses/by-sa/4.0/}
or send a letter to
Creative Commons
PO Box 1866, Mountain View, CA 94042, USA\@.
%Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
%94105, USA.
\bigskip
\noindent
You can use, print, duplicate, and share this book as much as you want. You can
base your own notes on it and reuse parts if you keep the license the
same. You can assume the license is either CC-BY-NC-SA or CC-BY-SA\@,
whichever is compatible with what you wish to do.
Your derivative work must use at least one of the licenses.
Derivative works must be prominently marked as such.
\bigskip
\noindent
\textbf{Acknowledgments:}
\\
I would like to thank
Adam Cartisano,
Josiah Ireland,
Hoai Dao,
Haridas Das,
Uddhaba Pandey,
Amanullah Nabavi,
Rajan Adhikari,
Abdullah Al Helal,
Preston Kelley,
Kevin Fern\'andez,
Jonathan Hunt,
and generally all students in my classes
for pointing out typos/errors
and helpful suggestions.
%
%\bigskip
%
%\noindent
%During the writing of this book,
%the author was in part supported by NSF grant DMS-1362337.
\bigskip
\noindent
\textbf{More information:}
\\
See \url{https://www.jirka.org/ca/} for more information
(including contacts).
\medskip
\noindent
The \LaTeX\ source for the book is available
for possible modification and customization
at github: \url{https://github.com/jirilebl/ca}
% For large print do this
%\large
\microtypesetup{protrusion=false}
\tableofcontents
\microtypesetup{protrusion=true}
%\addtocontents{toc}{\protect\vspace{-2\baselineskip}}
%\addtocontents{toc}{\protect\vspace{-\baselineskip}}
%\addtocontents{toc}{\protect\enlargethispage{\baselineskip}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter*{Introduction} \label{ch:intro}
\addcontentsline{toc}{chapter}{Introduction}
\markboth{INTRODUCTION}{INTRODUCTION}
\begin{myepigraph}
If you cannot prove a man wrong, don't panic. You can always call him names.
---Oscar Wilde
\end{myepigraph}
The purpose of this book is to teach a one-semester graduate course in
complex analysis for incoming graduate students.\footnote{I wrote it
specifically to teach Math 5283 at Oklahoma State University.}
The first seven chapters is a natural first semester in a two semester sequence where the second
semester could be several complex variables (e.g., \cite{scv:book})
or perhaps harmonic analysis.
It could perhaps be used for a more elementary two-semester sequence if the
appendix is covered first, and all the optional bits of the main text are
also covered.
We assume basic knowledge of undergraduate
analysis in the real variable, called advanced calculus in some schools.
The text assumes knowledge of metric spaces
and differential calculus in several variables, but if the reader is not
confident on these topics or has not yet seen them, the useful results
are presented (with proofs) in the appendices.
With that, a basic prerequisite for the
course would be at least a single semester of undergraduate analysis if the
appendices are also covered or read, and if the student has
seen metric spaces and mappings in $\R^2$, then the course
can just start in \Chapterref{ch:complexplane}. Very basic undergraduate
linear and abstract algebra is also useful.
The analysis prerequisites can be mostly found in
\cites{ra:book,ra:book2,Rudin:principles}. Further recommended
reading on complex analysis is \cites{Boas,Conway1,Conway2,Rudin,Ullrich}.
See the aptly named
\hyperref[ch:furtherreading]{Further Reading} chapter.
This book takes the view that we do not need to redefine and reprove
things that we have done in a basic undergraduate real analysis course,
especially with
regards to mappings of the plane. We can quite quickly jump to
holomorphic functions as solutions of the Cauchy--Riemann equations,
for instance.
The connection is to understand both the derivative of
a planar mapping and
multiplication by a complex number
as a $2 \times 2$ real matrix.
When we introduce line integrals, we connect
them to the line integrals the student has seen in calculus.
The inverse function theorem can be introduced early as
a consequence of the inverse function theorem in $\R^2$.
An outline of a pure complex analysis proof is left for later as an exercise.
These are not simply time saving measures.
The point is to stress that we are not defining some totally new and
different world.
We also try to introduce the $z,\bar{z}$ approach instead of just the
purely $x,y$ approach. For example, we introduce and use the Wirtinger
operators.
It is really a better way to think about complex variables.
We try not to define any conflicting terminology or notation
with what the reader has learned before.
Mainly, the term \myquote{differentiable} is generally left for the real
derivative and we use \myquote{complex differentiable} when needed. Although
to be sure,
we generally write \myquote{(real) differentiable} or
\myquote{differentiable (in the real sense)} to
make it clear when we mean real differentiability.
Finally, some sections early in the book are marked with a $\star$ and those
can be easily skipped on first reading (though it does not mean they are not
important, just not necessary for what follows). Skipping some may make it
possible to cover other later topics.
\medskip
The general dependence of the non-appendix chapters is the following diagram.
The way I ran my semester course was
to go through chapters
\ref{ch:complexplane}--\ref{ch:counting}, skipping the homotopy versions of
Cauchy, to get through basic theory of holomorphic functions,
then getting to \ref{ch:montelriemann} (Montel and Riemann mapping),
and some bits of \ref{ch:harmonic} (harmonic functions).
There are some extra topics for a different
plan such as
\ref{ch:weier} (Weierstrass factorization),
\ref{ch:runge} (Runge), and
\ref{ch:analcont} (analytic continuation).
\begin{equation*}
\begin{tikzcd}[cramped, row sep=small]
{\text{\Chdotref{ch:complexplane}}} \arrow[r] &
{\text{\Chdotref{ch:holanal}}} \arrow[r] &
{\text{\Chdotref{ch:cauchysimple}}} \arrow[r] &
{\text{\Chdotref{ch:log}}} \arrow[dl] \\
& & {\text{\Chdotref{ch:counting}}} \arrow[dl] \arrow[d]
\arrow[dr] \\
& {\text{\Chdotref{ch:montelriemann}}} \arrow[dl] \arrow[d] &
{\text{\Chdotref{ch:harmonic}}} &
{\text{\Chdotref{ch:weier}}}
\\
{\text{\Chdotref{ch:runge}}} &
{\text{\Chdotref{ch:analcont}}}
\\
\end{tikzcd}
\end{equation*}
The only reason why \ref{ch:runge} (Runge) depends on \ref{ch:montelriemann}
(Montel and Riemann mapping) is that we prove \lemmaref{lemma:patharoundK}
(around every compact there exists a cycle homologous to zero)
as an example application of Riemann mapping.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{The Complex Plane} \label{ch:complexplane}
\begin{myepigraph}
It's clearly a budget. It's got a lot of numbers in it.
---George W.\ Bush
\end{myepigraph}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Complex numbers} \label{sec:complexnums}
Modern\footnote{In this context, \emph{modern}
means \myquote{later than the middle ages.}}
mathematics
is taking a false statement such as
\myquote{all polynomials have a root} and redefining what a
\myquote{root} could be, that is,
redefining \myquote{number,}
so that the statement is true.
In this instance, we arrive at the complex numbers.
Although this technique (moving the goalposts)
feels like cheating, it gave us
essentially all the mathematics we know, both pure and applied.
This same
technique starts with the natural numbers
\glsadd{not:N}$\N = \{ 1,2,3,\ldots \}$, the only
numbers obvious from nature,
and gives us zero and negative numbers producing the integers
\glsadd{not:Z}$\Z$, so that we can solve equations such as $n+2 = 1$.
From \glsadd{not:Z}$\Z$, we define the rational numbers
\glsadd{not:Z}$\Q$ to solve\footnote{%
Do we really solve $2x=1$ by writing $x = \nicefrac{1}{2}$? After all,
$\nicefrac{1}{2}$ is just a placeholder for an object that we can't describe
in a way other than
\myquote{whatever $1$ divided by $2$ would be if it existed.}}
equations such as $2x=1$. We extend
\glsadd{not:Q}$\Q$ to the real numbers \glsadd{not:R}$\R$
to solve equations such as $x^2=2$. Actually our definition
of the real numbers is such that we get theorems like the
intermediate value theorem, Bolzano--Weierstrass,
etc. It is then not much of a stretch to do the same thing when trying
to solve $z^2+1=0$. Just as with the real numbers,
the consequences of adding $\sqrt{-1}$ to the mix are much more
profound than just finding roots of polynomials.
Interestingly, while the step into analysis with the real numbers
is a step into the abyss, the step into analysis with the complex numbers is a
step into a fairytale wonderland. A first-year real analysis course
crushes the student's hopes and dreams. Most reasonable statements
are false and bizarre counterexamples abound.
On the other hand, a complex analysis course fills the student with
unrealistic optimism. It is replete with na\"ive and silly statements
that only a bad calculus student could entertain.\footnote{%
E.g.: If you can differentiate once, you can differentiate twice.
Every function acts sort of like a linear function.
If all derivatives are zero at a point, the function is constant.
Etc.}
The two are the good-cop bad-cop, the yin-yang,
of contemporary analysis.
\subsection{The complex numbers as the plane}
You have surely seen the complex number field,
but let us review its definition anyway.
As a set, let the \emph{\myindex{complex number field}}
\glsadd{not:C}$\C$ be the set $\R^2 = \R \times \R$.
The set is a plane, so we call it the \emph{\myindex{complex plane}}%
\footnote{Although there is that odd mathematician out there that
thinks that the \emph{complex plane} is $\C^2 = \C \times \C$.
If you hear someone say that, politely whack them over the head for me.}.
To make it a field, we define addition and product:
\begin{align*}
(a,b) + (c,d) & \overset{\text{def}}{=} (a+b,c+d) , \\
(a,b) (c,d) & \overset{\text{def}}{=} (ac-bd,bc+da) .
\end{align*}
\begin{exbox}
\begin{exercise}%[\neededexmark]
Check that $\C$ is a field, where the additive
identity is $0=(0,0)$ and the multiplicative identity is $1=(1,0)$.
That is, $\C$ is an abelian group under addition,
the nonzero complex numbers are an abelian group under multiplication,
and the distributive law holds. Hint: The multiplicative inverse of $(a,b)$
is $\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$.
\end{exercise}
\end{exbox}
When we write a real number $x$, we identify it with the
complex number $(x,0)$.
With this identification $\R \subset \C$.
We also define the \emph{\myindex{imaginary unit}}%
\footnote{Beware of engineers; they think it is called $j$, despite there
being no \myquote{j} in \myquote{imaginary.}}%
\glsadd{not:i}
\begin{equation*}
i \overset{\text{def}}{=} (0,1) .
\end{equation*}
With this notation, $(x,y) = x+iy$. From now on, $x+iy$ is the only way we
will write
the complex numbers in terms of the coordinates $x$ and $y$.
We call $x+iy$ the \emph{\myindex{cartesian form}}
of the complex number.
The number $i$ has the magical property that
\begin{equation*}
i^2 = -1 .
\end{equation*}
For this reason we sometimes%
\footnote{There are those that \emph{always} write $\sqrt{-1}$ instead of $i$.
Those people also deserve a good whack.}
write $i = \sqrt{-1}$.
Note that there is another square root of $-1$, that is, $-i$.
The numbers $i$ and $-i$ are the solutions to $z^2+1=0$.
We will prove later that every polynomial has roots over the complex numbers.
Given a complex number $z=x+iy$, its \myquote{evil twin} is
the \emph{\myindex{complex conjugate}} of $z$:
\glsadd{not:conj}%
\begin{equation*}
\bar{z} \overset{\text{def}}{=} x-iy.
\end{equation*}
The number $x$ is called the
\emph{\myindex{real part}} and $y$ is called the
\emph{\myindex{imaginary part}}. We write
\glsadd{not:real}%
\glsadd{not:imag}%
\begin{equation*}
\Re z =
\Re (x+iy) =
\frac{z+\bar{z}}{2}
= x, \qquad
\Im z =
\Im (x+iy) =
\frac{z-\bar{z}}{2i}
=
y .
\end{equation*}
A particularly useful observation is that we wrote the
real part and the imaginary part in terms of $z$ and $\bar{z}$.
Any expression we write in terms of the real and imaginary parts of $z$,
we can equally well write in terms of $z$ and $\bar{z}$. And vice versa.
For example,
\begin{equation*}
x^3 + y^3 + 3ixy
=
{\left( \frac{z+ \bar{z}}{2} \right)}^3 +
{\left( \frac{z- \bar{z}}{2i} \right)}^3 +
3i {\left( \frac{z+ \bar{z}}{2} \right)}
{\left( \frac{z- \bar{z}}{2i} \right)} ,
\end{equation*}
or
\begin{equation*}
z^2 - i \bar{z}^2 + z \bar{z}
=
{(x+iy)}^2 - i {(x-iy)}^2 +
(x+iy)(x-iy) .
\end{equation*}
It may seem that an expression in terms of $z$ and $\bar{z}$ is more
complicated. Namely, $z$ and $\bar{z}$ are not
\myquote{independent variables.} However, it is particularly powerful to
think in terms of $z$ and $\bar{z}$ instead of $x$ and $y$, and to pretend
in many contexts as if $z$ and $\bar{z}$ were actually independent
variables.
\subsection{The geometry and topology of the plane}
The size of $z$ is measured by the so-called \emph{\myindex{modulus}},
which is just the \emph{\myindex{euclidean distance}}
from the origin to $z$:
\glsadd{not:mod}%
\begin{equation*}
\sabs{z} \overset{\text{def}}{=} \sqrt{z \bar{z}} = \sqrt{x^2+y^2} .
\end{equation*}
More simply, ${\sabs{z}}^2 = z\bar{z}$.
Notice $\sabs{z} \geq 0$, and $\sabs{z} = 0$
if and only if $z=0$.
\begin{prop}[Cauchy--Schwarz and the triangle inequality]
If $z,w \in \C$, then
\begin{enumerate}[(i)]
\item
$\sabs{\Re z\bar{w}} \leq \sabs{z} \sabs{w}$ \quad (Cauchy--Schwarz inequality\footnote{%
The name is wrong.
Some (wrongly) say it should be Cauchy--Bunyakovsky--Schwarz.
Bunyakovsky and Schwarz proved the infinite-dimensional version.
This version ought to be called
Cauchy inequality, but lamentably that name could refer to a different
inequality, the Cauchy estimates.}, note: $\Re z
\bar{w}$ is the $\R^2$ dot product),\index{Cauchy--Schwarz}
\item
$\sabs{z+w} \leq \sabs{z} + \sabs{w}$ \quad (Triangle inequality).%
\index{triangle inequality!complex numbers}
\end{enumerate}
\end{prop}
\begin{proof}
The modulus squared of a complex number is always nonnegative.
Thus,
\begin{equation*}
\begin{split}
0 & \leq {\sabs{z\bar{w}-\bar{z}w}}^2 \\
& = (z\bar{w}-\bar{z}w)(\bar{z}w-z\bar{w}) \\
& = 2z\bar{z}w\bar{w} - z^2\bar{w}^2 - \bar{z}^2w^2 \\
& = 4z\bar{z}w\bar{w} - {(z\bar{w}+\bar{z}w)}^2 \\
& = {\bigl(2\sabs{z}\sabs{w}\bigr)}^2 - {\bigl(2 \Re z\bar{w}\bigr)}^2 .
\end{split}
\end{equation*}
This proves Cauchy--Schwarz. We prove the triangle inequality
via Cauchy--Schwarz:
\begin{equation*}
\begin{split}
{\sabs{z+w}}^2 & = (z+w)(\bar{z}+\bar{w}) \\
& = z\bar{z} + w\bar{w} + z\bar{w} + \bar{z}w \\
& \leq z\bar{z} + w\bar{w} + 2 \sabs{z}\sabs{w} \\
& = {\bigl(\sabs{z}+\sabs{w}\bigr)}^2 . \qedhere
\end{split}
\end{equation*}
\end{proof}
\begin{exbox}
\begin{exercise}
Prove the \emph{\myindex{polarization identity}}
$4 z\bar{w} =
{\sabs{z+w}}^2-{\sabs{z-w}}^2 +i \bigl( {\sabs{z+iw}}^2 - {\sabs{z-iw}}^2 \bigr)$.
\end{exercise}
\end{exbox}
The distance between two numbers $z$ and $w$ is measured by
\begin{equation*}
\sabs{z-w} .
\end{equation*}
This distance makes $\C$ into a complete metric space. By complete, we mean that
Cauchy sequences have limits. See \Appendixref{ap:metric}
for an introduction to metric spaces.
\begin{prop}
Complex addition, multiplication, division, and conjugation are continuous:
Suppose $\{ a_n \}$ and $\{ b_n \}$ are two convergent sequences
of complex numbers. Then,
\begin{enumerate}[(i)]
\item
$\lim\limits_{n\to\infty} (a_n + b_n) =
\left(\lim\limits_{n\to\infty} a_n \right) +
\left(\lim\limits_{n\to\infty} b_n \right)$,
\item
$\lim\limits_{n\to\infty} a_n b_n =
\left(\lim\limits_{n\to\infty} a_n \right)
\left(\lim\limits_{n\to\infty} b_n \right)$,
\item
$\lim\limits_{n\to\infty} \frac{1}{a_n} = \frac{1}{\lim\limits_{n\to\infty} a_n}$,
as long as $\lim\limits_{n\to\infty} a_n \not= 0$,
\item
$\lim\limits_{n\to\infty} \bar{a}_n =
\overline{\lim\limits_{n\to\infty} a_n}$.
\end{enumerate}
\end{prop}
\begin{exbox}
\begin{exercise}%[\neededexmark]
Prove the proposition.
\end{exercise}
\end{exbox}
The basic neighborhood (that is, an
open ball) in $\C$
is called a \emph{\myindex{disc}}.
Given $p \in \C$ and $r > 0$, define the disc of radius $r$ around
$p$
as
\glsadd{not:disc}%
\begin{equation*}
\Delta_r(p)
\overset{\text{def}}{=}
\bigl\{ z \in \C : \sabs{z-p} < r \bigr\} .
\end{equation*}
A disc centered at the origin of radius $1$ is called the
\emph{\myindex{unit disc}}
\glsadd{not:D}%
\begin{equation*}
\D
\overset{\text{def}}{=}
\Delta_1(0)
=
\bigl\{ z \in \C : \sabs{z} < 1 \bigr\} .
\end{equation*}
The unit disc will come up often in this course, as it turns out that
a lot of complex analysis can be done by looking at just the unit disc.
A useful \myquote{version} of the unit disc is the \emph{\myindex{upper half-plane}}:
\glsadd{not:H}%
\begin{equation*}
\bH
\overset{\text{def}}{=}
\bigl\{
z \in \C : \Im z > 0
\bigr\} .
\end{equation*}
We will see in a moment that $\D$ and $\bH$ are equivalent in a
very nice way.
Things done on the unit disc can just as well be done on the upper half-plane.
The following definition is perhaps somewhat unnecessary, but it is
easier to write and say than \emph{open and connected}, and it is commonly
used in complex analysis.\footnote{We generally consider our sets
also nonempty, but usually the statements of results for empty open sets or
domains are simply vacuous.}
\begin{defn}
An open and connected set $U \subset \C$ is called a
\emph{\myindex{domain}}.\footnote{Perhaps \myquote{domain} is a tad unfortunate since
we also call the $X$ in $f \colon X \to Y$ a \myquote{domain} of the function,
even if $X$ is not a domain in the sense of topology.}
\end{defn}
\subsection{Complex-valued functions}
It is possible that the analysis you have seen so far in your mathematical
career has been for real-valued functions $f \colon X \to \R$. In this
book, we are concerned with complex-valued functions $f \colon X \to \C$.
The results for real-valued functions are then applied by thinking of
either the components of $f$ separately or by thinking of $\C$ as the
real vector space $\R^2$.
When we find ourselves in the possession of a complex-valued function
$f \colon X \to \C$, we write $u = \Re f$
and $v = \Im f$ for real-valued functions $u,v \colon X \to \R$, and then
\begin{equation*}
f = u+iv .
\end{equation*}
If $X \subset \C$, we think of $X \subset \R^2$.
A derivative in $x$ or $y$ (where $z=x+iy$) is then applied to the
components (just as if $f$ was valued in $\R^2$):
\begin{equation*}
\frac{\partial f}{\partial x} =
\frac{\partial u}{\partial x} + i
\frac{\partial v}{\partial x}
\qquad\text{and}\qquad
\frac{\partial f}{\partial y} =
\frac{\partial u}{\partial y} + i
\frac{\partial v}{\partial y} .
\end{equation*}
If $X \subset \R$, that is, if $f$ is a complex-valued
function of one real variable, then $f' = u' + iv'$.
Equivalently, we treat $f$ as a function from $\R$ to $\R^2$
and hence $f'$ is a $2 \times 1$ matrix---a column vector, or in other words
$f'$ represents a complex number if we are identifying $\C$ and $\R^2$.
Matters are similar for integration.
For $f \colon [a,b] \to \C$,
we say $f$ is (Riemann) integrable if $u$ and $v$ are, and then
\begin{equation*}
\int_a^b f(t) \, dt =