-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·211 lines (177 loc) · 8.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
from __future__ import print_function, division
from config import *
from GalaxiesDataset import *
from SanderDielemanNet import *
import os, time, copy, sys
import pandas as pd
import numpy as np
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from skimage import io, transform
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
################################################################################
### Load the dataset
################################################################################
if MODEL == "sander_dieleman":
transf = transforms.Compose([
transforms.CenterCrop((224, 224)),
transforms.Resize((45, 45)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=(0,360)),
transforms.RandomVerticalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
transf = transforms.Compose([
transforms.CenterCrop((224, 224)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=(0,360)),
transforms.RandomVerticalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_ds = GalaxiesDataset(TRAIN_DIR, TRAIN_CSV, transform=transf)
size = len(train_ds)
indices = list(range(size))
split = int(np.floor(VALIDATION_SPLIT * size))
if SHUFFLE_DS:
np.random.seed(RANDOM_SEED)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_indices)
val_sampler = SubsetRandomSampler(val_indices)
train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, num_workers=22,
sampler=train_sampler)
val_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, num_workers=22,
sampler=val_sampler)
print("Total: {} Train_dl: {} Validation_dl: {}".format(size, len(train_dl),
len(val_dl)))
################################################################################
################################################################################
### Create the network and move it to the appropriate device
################################################################################
if MODEL == "sander_dieleman":
model = SanderDielemanNet(num_classes=37)
elif MODEL == "alexnet":
model = models.AlexNet(37)
elif MODEL == "vgg16":
model = models.vgg16(num_classes=37)
elif MODEL == "resnet50":
model = models.resnet50(num_classes=37)
else:
print("Unknown MODEL requested.")
sys.exit(1)
print("Creating", MODEL, "model")
model = nn.DataParallel(model, device_ids=range(NR_DEVICES))
device = torch.device(DEVICE)
model.to(device)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.4, momentum=0.9)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
################################################################################
################################################################################
### Train the network
################################################################################
def train_phase():
model.train()
losses = []
epoch_start = time.time()
for i, batch in enumerate(train_dl):
inputs, labels = batch['image'], batch['labels'].float().view(-1,37)
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad() # 1. Zero the parameter gradients
outputs = model(inputs) # 2. Run the model
loss = criterion(outputs, labels) # 3. Calculate loss
losses.append(loss.item())
loss = torch.sqrt(loss) # -> RMSE loss
loss.backward() # 4. Backward propagate the loss
optimizer.step() # 5. Optimize the network
#print("--> Batch {}/{} Loss: {}".format(i+1, len(train_dl), loss.item()))
epoch_loss = np.sqrt(sum(losses) / len(losses))
epoch_time = time.time() - epoch_start
print("[TST] Epoch: {} Loss: {} Time: {:.0f}:{:.0f}".format(epoch+1, epoch_loss,
epoch_time // 60,
epoch_time % 60))
return epoch_loss
def validate_phase():
model.eval()
losses = []
epoch_start = time.time()
for i, batch in enumerate(val_dl):
inputs, labels = batch['image'], batch['labels'].float().view(-1,37)
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs) # 2. Run the model
loss = criterion(outputs, labels) # 3. Calculate loss
losses.append(loss.item())
loss = torch.sqrt(loss) # -> RMSE loss
#print("--> Batch {}/{} Loss: {}".format(i+1, len(train_dl), loss.item()))
epoch_loss = np.sqrt(sum(losses) / len(losses))
epoch_time = time.time() - epoch_start
print("[VAL] Epoch: {} Loss: {} Time: {:.0f}:{:.0f}".format(epoch+1, epoch_loss,
epoch_time // 60,
epoch_time % 60))
return epoch_loss
train_losses = []
val_losses = []
for epoch in range(NUM_EPOCHS):
train_loss = train_phase()
val_loss = validate_phase()
scheduler.step(val_loss)
train_losses.append(train_loss)
val_losses.append(val_loss)
################################################################################
################################################################################
### Save the trained model
################################################################################
if SAVE_MODEL:
torch.save(model, MODEL_FILENAME)
################################################################################
################################################################################
### Run the test and produce the output csv file
################################################################################
if MODEL == "sander_dieleman":
transf = transforms.Compose([
transforms.CenterCrop((224, 224)),
transforms.Resize((45, 45)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
transf = transforms.Compose([
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
test_ds = GalaxiesDataset(TEST_DIR, TEST_CSV, transform=transf)
test_dl = DataLoader(test_ds, batch_size=64, num_workers=22, shuffle=False)
model.eval()
for i, batch in enumerate(test_dl):
inputs = batch['image']
inputs = inputs.to(device)
outputs = model(inputs)
if i == 0:
ids = batch['id'].numpy()
labels = outputs.detach().cpu().numpy()
else:
ids = np.concatenate((ids, batch['id'].numpy()))
labels = np.vstack((labels, outputs.detach().cpu().numpy()))
print(ids.shape, labels.shape)
combined = np.column_stack((ids, labels))
print(combined.shape)
pd_df = pd.DataFrame(combined, columns=CSV_HEADER)
pd_df["GalaxyID"] = pd_df["GalaxyID"].astype(np.uint32)
pd_df.to_csv(OUTPUT_CSV, index=None)
################################################################################