-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathtd_lstm.py
227 lines (196 loc) · 10.3 KB
/
td_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# encoding: utf-8
# @author: newbie
# email: [email protected]
import numpy as np
import tensorflow as tf
from utils import load_w2v, batch_index, load_inputs_twitter, load_word_id_mapping
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('embedding_dim', 100, 'dimension of word embedding')
tf.app.flags.DEFINE_integer('batch_size', 200, 'number of example per batch')
tf.app.flags.DEFINE_integer('n_hidden', 200, 'number of hidden unit')
tf.app.flags.DEFINE_float('learning_rate', 0.01, 'learning rate')
tf.app.flags.DEFINE_integer('n_class', 3, 'number of distinct class')
tf.app.flags.DEFINE_integer('max_sentence_len', 80, 'max number of tokens per sentence')
tf.app.flags.DEFINE_float('l2_reg', 0.001, 'l2 regularization')
tf.app.flags.DEFINE_integer('display_step', 4, 'number of test display step')
tf.app.flags.DEFINE_integer('n_iter', 10, 'number of train iter')
tf.app.flags.DEFINE_string('train_file_path', 'data/twitter/train.raw', 'training file')
tf.app.flags.DEFINE_string('validate_file_path', 'data/twitter/validate.raw', 'validating file')
tf.app.flags.DEFINE_string('test_file_path', 'data/twitter/test.raw', 'testing file')
tf.app.flags.DEFINE_string('embedding_file_path', 'data/twitter/twitter_word_embedding_partial_100.txt', 'embedding file')
tf.app.flags.DEFINE_string('word_id_file_path', 'data/twitter/word_id.txt', 'word-id mapping file')
tf.app.flags.DEFINE_string('type', 'TD', 'model type: ''(default), TD or TC')
class LSTM(object):
def __init__(self, embedding_dim=100, batch_size=64, n_hidden=100, learning_rate=0.01,
n_class=3, max_sentence_len=50, l2_reg=0., display_step=4, n_iter=100, type_=''):
self.embedding_dim = embedding_dim
self.batch_size = batch_size
self.n_hidden = n_hidden
self.learning_rate = learning_rate
self.n_class = n_class
self.max_sentence_len = max_sentence_len
self.l2_reg = l2_reg
self.display_step = display_step
self.n_iter = n_iter
self.type_ = type_
self.word_id_mapping, self.w2v = load_w2v(FLAGS.embedding_file_path, self.embedding_dim)
self.word_embedding = tf.constant(self.w2v, name='word_embedding')
# self.word_embedding = tf.Variable(self.w2v, name='word_embedding')
# self.word_id_mapping = load_word_id_mapping(FLAGS.word_id_file_path)
# self.word_embedding = tf.Variable(
# tf.random_uniform([len(self.word_id_mapping), self.embedding_dim], -0.1, 0.1), name='word_embedding')
self.dropout_keep_prob = tf.placeholder(tf.float32)
with tf.name_scope('inputs'):
self.x = tf.placeholder(tf.int32, [None, self.max_sentence_len])
self.y = tf.placeholder(tf.int32, [None, self.n_class])
self.sen_len = tf.placeholder(tf.int32, None)
self.x_bw = tf.placeholder(tf.int32, [None, self.max_sentence_len])
self.y_bw = tf.placeholder(tf.int32, [None, self.n_class])
self.sen_len_bw = tf.placeholder(tf.int32, [None])
with tf.name_scope('weights'):
self.weights = {
'softmax_bi_lstm': tf.get_variable(
name='bi_lstm_w',
shape=[2 * self.n_hidden, self.n_class],
initializer=tf.random_uniform_initializer(-0.003, 0.003),
regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
)
}
with tf.name_scope('biases'):
self.biases = {
'softmax_bi_lstm': tf.get_variable(
name='bi_lstm_b',
shape=[self.n_class],
initializer=tf.random_uniform_initializer(-0.003, 0.003),
regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
)
}
def bi_dynamic_lstm(self, inputs_fw, inputs_bw):
"""
:params: self.x, self.x_bw, self.seq_len, self.seq_len_bw,
self.weights['softmax_lstm'], self.biases['softmax_lstm']
:return: non-norm prediction values
"""
inputs_fw = tf.nn.dropout(inputs_fw, keep_prob=self.dropout_keep_prob)
inputs_bw = tf.nn.dropout(inputs_bw, keep_prob=self.dropout_keep_prob)
with tf.name_scope('forward_lstm'):
outputs_fw, state_fw = tf.nn.dynamic_rnn(
tf.nn.rnn_cell.LSTMCell(self.n_hidden),
inputs=inputs_fw,
sequence_length=self.sen_len,
dtype=tf.float32,
scope='LSTM_fw'
)
batch_size = tf.shape(outputs_fw)[0]
index = tf.range(0, batch_size) * self.max_sentence_len + (self.sen_len - 1)
output_fw = tf.gather(tf.reshape(outputs_fw, [-1, self.n_hidden]), index) # batch_size * n_hidden
with tf.name_scope('backward_lstm'):
outputs_bw, state_bw = tf.nn.dynamic_rnn(
tf.nn.rnn_cell.LSTMCell(self.n_hidden),
inputs=inputs_bw,
sequence_length=self.sen_len_bw,
dtype=tf.float32,
scope='LSTM_bw'
)
batch_size = tf.shape(outputs_bw)[0]
index = tf.range(0, batch_size) * self.max_sentence_len + (self.sen_len_bw - 1)
output_bw = tf.gather(tf.reshape(outputs_bw, [-1, self.n_hidden]), index) # batch_size * n_hidden
output = tf.concat([output_fw, output_bw], 1) # batch_size * 2n_hidden
predict = tf.matmul(output, self.weights['softmax_bi_lstm']) + self.biases['softmax_bi_lstm']
return predict
def run(self):
inputs_fw = tf.nn.embedding_lookup(self.word_embedding, self.x)
inputs_bw = tf.nn.embedding_lookup(self.word_embedding, self.x_bw)
prob = self.bi_dynamic_lstm(inputs_fw, inputs_bw)
with tf.name_scope('loss'):
reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prob, labels=self.y)) + sum(reg_loss)
with tf.name_scope('train'):
global_step = tf.Variable(0, name="tr_global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(cost, global_step=global_step)
with tf.name_scope('predict'):
correct_pred = tf.equal(tf.argmax(prob, 1), tf.argmax(self.y, 1))
accuracy = tf.reduce_sum(tf.cast(correct_pred, tf.int32))
acc_ = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
summary_loss = tf.summary.scalar('loss', cost)
summary_acc = tf.summary.scalar('acc', acc_)
# Currently does not work
#train_summary_op = tf.summary.FileWriter([summary_loss, summary_acc])
#validate_summary_op = tf.summary.FileWriter([summary_loss, summary_acc])
#test_summary_op = tf.summary.FileWriter([summary_loss, summary_acc])
import time
timestamp = str(int(time.time()))
_dir = 'logs/' + str(timestamp) + '_' + self.type_ + '_r' + str(self.learning_rate) + '_b' + str(self.batch_size) + '_l' + str(self.l2_reg)
train_summary_writer = tf.summary.FileWriter(_dir + '/train', sess.graph)
test_summary_writer = tf.summary.FileWriter(_dir + '/test', sess.graph)
validate_summary_writer = tf.summary.FileWriter(_dir + '/validate', sess.graph)
tr_x, tr_sen_len, tr_x_bw, tr_sen_len_bw, tr_y = load_inputs_twitter(
FLAGS.train_file_path,
self.word_id_mapping,
self.max_sentence_len,
self.type_
)
te_x, te_sen_len, te_x_bw, te_sen_len_bw, te_y = load_inputs_twitter(
FLAGS.test_file_path,
self.word_id_mapping,
self.max_sentence_len,
self.type_
)
init = tf.global_variables_initializer()
sess.run(init)
max_acc = 0.
for i in range(self.n_iter):
for train, _ in self.get_batch_data(tr_x, tr_sen_len, tr_x_bw, tr_sen_len_bw, tr_y, self.batch_size, 1.0):
_, step = sess.run([optimizer, global_step], feed_dict=train)
#_, step, summary = sess.run([optimizer, global_step, train_summary_op], feed_dict=train)
#train_summary_writer.add_summary(summary, step)
acc, loss, cnt, summary = 0., 0., 0, None
for test, num in self.get_batch_data(te_x, te_sen_len, te_x_bw, te_sen_len_bw, te_y, 2000, 1.0):
_loss, _acc = sess.run([cost, accuracy], feed_dict=test)
#_loss, _acc, summary = sess.run([cost, accuracy, test_summary_op], feed_dict=test)
acc += _acc
loss += _loss * num
cnt += num
print(cnt)
print(acc)
#test_summary_writer.add_summary(summary, step)
print('Iter {}: mini-batch loss={:.6f}, test acc={:.6f}'.format(step, loss / cnt, acc / cnt))
if acc / cnt > max_acc:
max_acc = acc / cnt
print('Optimization Finished! Max acc={}'.format(max_acc))
print('Learning_rate={}, iter_num={}, batch_size={}, hidden_num={}, l2={}'.format(
self.learning_rate,
self.n_iter,
self.batch_size,
self.n_hidden,
self.l2_reg
))
def get_batch_data(self, x, sen_len, x_bw, sen_len_bw, y, batch_size, keep_prob):
for index in batch_index(len(y), batch_size, 1):
feed_dict = {
self.x: x[index],
self.x_bw: x_bw[index],
self.y: y[index],
self.sen_len: sen_len[index],
self.sen_len_bw: sen_len_bw[index],
self.dropout_keep_prob: keep_prob,
}
yield feed_dict, len(index)
def main(_):
lstm = LSTM(
embedding_dim=FLAGS.embedding_dim,
batch_size=FLAGS.batch_size,
n_hidden=FLAGS.n_hidden,
learning_rate=FLAGS.learning_rate,
n_class=FLAGS.n_class,
max_sentence_len=FLAGS.max_sentence_len,
l2_reg=FLAGS.l2_reg,
display_step=FLAGS.display_step,
n_iter=FLAGS.n_iter,
type_=FLAGS.type
)
lstm.run()
if __name__ == '__main__':
tf.app.run()