-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_Assumptions_p12.py
62 lines (47 loc) · 1.5 KB
/
Test_Assumptions_p12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import random
style.use('fivethirtyeight')
# xs=np.array([1,2,3,4,5,6])
# ys=np.array([5,4,6,5,6,7])
def create_dataset(hm, variance, step=2, correlation=False):
val=1
ys=[]
for i in range (hm):
y=val+random.randrange(-variance,variance)
ys.append(y)
if correlation and correlation == 'pos':
val+=step
elif correlation and correlation == 'neg':
val-=step
xs=[i for i in range(len(ys))]
return np.array(xs),np.array(ys)
def best_fit_slope_and_intercept(xs,ys):
m=(((mean(xs)*mean(ys))-mean(xs*ys))
/((mean(xs)**2)-mean(xs**2)))
b=mean(ys)-m*mean(xs)
return m,b
xs,ys=create_dataset(40,80,2,correlation=False)
m,b=best_fit_slope_and_intercept(xs,ys)
#print(m,b)
def squared_error(ys_orig,ys_line):
return sum((ys_line-ys_orig)**2)
def coefficient_of_determination(ys_orig,ys_line):
y_mean_line=[mean(ys_orig) for y in ys_orig]
squared_error_regr=squared_error(ys_orig,ys_line)
squared_error_y_mean=squared_error(ys_orig,y_mean_line)
return 1-(squared_error_regr/squared_error_y_mean)
regression_line=[(m*x)+b for x in xs]
predict_x=8
predict_y=m*predict_x+b
###same as
# for x in xs:
# regression_line=m*x+b
r_squared=coefficient_of_determination(ys,regression_line)
print(r_squared)
plt.scatter(xs,ys)
plt.scatter(predict_x,predict_y,s=100,color='g')
plt.plot(xs,regression_line)
plt.show()