-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_env.py
276 lines (230 loc) · 11.9 KB
/
custom_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import math
import genesis as gs
from genesis.utils.geom import quat_to_xyz, transform_by_quat, inv_quat, transform_quat_by_quat
from browser_streamer.browser_streamer import BrowserStreamer
def gs_rand_float(lower, upper, shape, device):
return (upper - lower) * torch.rand(size=shape, device=device) + lower
class CustomEnv:
def __init__(self, num_envs, env_cfg, obs_cfg, reward_cfg, command_cfg, show_viewer=False, device="cuda"):
self.device = torch.device(device)
self.num_envs = num_envs
self.num_obs = obs_cfg["num_obs"]
self.num_privileged_obs = None
self.num_actions = env_cfg["num_actions"]
self.num_commands = command_cfg["num_commands"]
self.simulate_action_latency = True # there is a 1 step latency on real robot
self.dt = 0.02 # control frequence on real robot is 50hz
self.max_episode_length = math.ceil(env_cfg["episode_length_s"] / self.dt)
self.env_cfg = env_cfg
self.obs_cfg = obs_cfg
self.reward_cfg = reward_cfg
self.command_cfg = command_cfg
self.obs_scales = obs_cfg["obs_scales"]
self.reward_scales = reward_cfg["reward_scales"]
# create scene
self.scene = gs.Scene(
sim_options=gs.options.SimOptions(dt=self.dt, substeps=2),
viewer_options=gs.options.ViewerOptions(
max_FPS=int(0.5 / self.dt),
camera_pos=(2.0, 0.0, 2.5),
camera_lookat=(0.0, 0.0, 0.5),
camera_fov=40,
),
vis_options=gs.options.VisOptions(n_rendered_envs=1),
rigid_options=gs.options.RigidOptions(
dt=self.dt,
constraint_solver=gs.constraint_solver.Newton,
enable_collision=True,
enable_self_collision=True,
enable_joint_limit=True,
),
show_viewer=show_viewer,
)
self.camera = self.scene.add_camera(
res = (1280, 960),
pos = (2.0, 0.0, 2.5),
lookat = (0.0, 0.0, 0.5),
fov = 40,
GUI = False,
)
self.webviewer = BrowserStreamer(port=5000)
# add plain
self.scene.add_entity(gs.morphs.URDF(file="urdf/plane/plane.urdf", fixed=True))
# add robot
self.base_init_pos = torch.tensor(self.env_cfg["base_init_pos"], device=self.device)
self.base_init_quat = torch.tensor(self.env_cfg["base_init_quat"], device=self.device)
self.inv_base_init_quat = inv_quat(self.base_init_quat)
self.robot = self.scene.add_entity(
gs.morphs.URDF(
file="./bolt_description/robots/bolt.urdf",
pos=self.base_init_pos.cpu().numpy(),
quat=self.base_init_quat.cpu().numpy(),
),
)
# build
self.scene.build(n_envs=num_envs)
# names to indices
self.motor_dofs = [self.robot.get_joint(name).dof_idx_local for name in self.env_cfg["dof_names"]]
# PD control parameters
self.robot.set_dofs_kp([self.env_cfg["kp"]] * self.num_actions, self.motor_dofs)
self.robot.set_dofs_kv([self.env_cfg["kd"]] * self.num_actions, self.motor_dofs)
# prepare reward functions and multiply reward scales by dt
self.reward_functions, self.episode_sums = dict(), dict()
for name in self.reward_scales.keys():
self.reward_scales[name] *= self.dt
self.reward_functions[name] = getattr(self, "_reward_" + name)
self.episode_sums[name] = torch.zeros((self.num_envs,), device=self.device, dtype=gs.tc_float)
# initialize buffers
self.base_lin_vel = torch.zeros((self.num_envs, 3), device=self.device, dtype=gs.tc_float)
self.base_ang_vel = torch.zeros((self.num_envs, 3), device=self.device, dtype=gs.tc_float)
self.projected_gravity = torch.zeros((self.num_envs, 3), device=self.device, dtype=gs.tc_float)
self.global_gravity = torch.tensor([0.0, 0.0, -1.0], device=self.device, dtype=gs.tc_float).repeat(
self.num_envs, 1
)
self.obs_buf = torch.zeros((self.num_envs, self.num_obs), device=self.device, dtype=gs.tc_float)
self.rew_buf = torch.zeros((self.num_envs,), device=self.device, dtype=gs.tc_float)
self.reset_buf = torch.ones((self.num_envs,), device=self.device, dtype=gs.tc_int)
self.episode_length_buf = torch.zeros((self.num_envs,), device=self.device, dtype=gs.tc_int)
self.commands = torch.zeros((self.num_envs, self.num_commands), device=self.device, dtype=gs.tc_float)
self.commands_scale = torch.tensor(
[self.obs_scales["lin_vel"], self.obs_scales["lin_vel"], self.obs_scales["ang_vel"]],
device=self.device,
dtype=gs.tc_float,
)
self.actions = torch.zeros((self.num_envs, self.num_actions), device=self.device, dtype=gs.tc_float)
self.last_actions = torch.zeros_like(self.actions)
self.dof_pos = torch.zeros_like(self.actions)
self.dof_vel = torch.zeros_like(self.actions)
self.last_dof_vel = torch.zeros_like(self.actions)
self.base_pos = torch.zeros((self.num_envs, 3), device=self.device, dtype=gs.tc_float)
self.base_quat = torch.zeros((self.num_envs, 4), device=self.device, dtype=gs.tc_float)
self.default_dof_pos = torch.tensor(
[self.env_cfg["default_joint_angles"][name] for name in self.env_cfg["dof_names"]],
device=self.device,
dtype=gs.tc_float,
)
self.extras = dict() # extra information for logging
def _resample_commands(self, envs_idx):
self.commands[envs_idx, 0] = gs_rand_float(*self.command_cfg["lin_vel_x_range"], (len(envs_idx),), self.device)
self.commands[envs_idx, 1] = gs_rand_float(*self.command_cfg["lin_vel_y_range"], (len(envs_idx),), self.device)
self.commands[envs_idx, 2] = gs_rand_float(*self.command_cfg["ang_vel_range"], (len(envs_idx),), self.device)
def step(self, actions):
self.actions = torch.clip(actions, -self.env_cfg["clip_actions"], self.env_cfg["clip_actions"])
exec_actions = self.last_actions if self.simulate_action_latency else self.actions
target_dof_pos = exec_actions * self.env_cfg["action_scale"] + self.default_dof_pos
self.robot.control_dofs_position(target_dof_pos, self.motor_dofs)
self.scene.step()
rgb = self.camera.render()
self.webviewer.render(rgb[0])
# update buffers
self.episode_length_buf += 1
self.base_pos[:] = self.robot.get_pos()
self.base_quat[:] = self.robot.get_quat()
self.base_euler = quat_to_xyz(
transform_quat_by_quat(torch.ones_like(self.base_quat) * self.inv_base_init_quat, self.base_quat)
)
inv_base_quat = inv_quat(self.base_quat)
self.base_lin_vel[:] = transform_by_quat(self.robot.get_vel(), inv_base_quat)
self.base_ang_vel[:] = transform_by_quat(self.robot.get_ang(), inv_base_quat)
self.projected_gravity = transform_by_quat(self.global_gravity, inv_base_quat)
self.dof_pos[:] = self.robot.get_dofs_position(self.motor_dofs)
self.dof_vel[:] = self.robot.get_dofs_velocity(self.motor_dofs)
# resample commands
envs_idx = (
(self.episode_length_buf % int(self.env_cfg["resampling_time_s"] / self.dt) == 0)
.nonzero(as_tuple=False)
.flatten()
)
self._resample_commands(envs_idx)
# check termination and reset
self.reset_buf = self.episode_length_buf > self.max_episode_length
self.reset_buf |= torch.abs(self.base_euler[:, 1]) > self.env_cfg["termination_if_pitch_greater_than"]
self.reset_buf |= torch.abs(self.base_euler[:, 0]) > self.env_cfg["termination_if_roll_greater_than"]
time_out_idx = (self.episode_length_buf > self.max_episode_length).nonzero(as_tuple=False).flatten()
self.extras["time_outs"] = torch.zeros_like(self.reset_buf, device=self.device, dtype=gs.tc_float)
self.extras["time_outs"][time_out_idx] = 1.0
self.reset_idx(self.reset_buf.nonzero(as_tuple=False).flatten())
# compute reward
self.rew_buf[:] = 0.0
for name, reward_func in self.reward_functions.items():
rew = reward_func() * self.reward_scales[name]
self.rew_buf += rew
self.episode_sums[name] += rew
# compute observations
self.obs_buf = torch.cat(
[
self.base_ang_vel * self.obs_scales["ang_vel"], # 3
self.projected_gravity, # 3
self.commands * self.commands_scale, # 3
(self.dof_pos - self.default_dof_pos) * self.obs_scales["dof_pos"], # 12
self.dof_vel * self.obs_scales["dof_vel"], # 12
self.actions, # 12
],
axis=-1,
)
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
return self.obs_buf, None, self.rew_buf, self.reset_buf, self.extras
def get_observations(self):
return self.obs_buf
def get_privileged_observations(self):
return None
def reset_idx(self, envs_idx):
if len(envs_idx) == 0:
return
# reset dofs
self.dof_pos[envs_idx] = self.default_dof_pos
self.dof_vel[envs_idx] = 0.0
self.robot.set_dofs_position(
position=self.dof_pos[envs_idx],
dofs_idx_local=self.motor_dofs,
zero_velocity=True,
envs_idx=envs_idx,
)
# reset base
self.base_pos[envs_idx] = self.base_init_pos
self.base_quat[envs_idx] = self.base_init_quat.reshape(1, -1)
self.robot.set_pos(self.base_pos[envs_idx], zero_velocity=False, envs_idx=envs_idx)
self.robot.set_quat(self.base_quat[envs_idx], zero_velocity=False, envs_idx=envs_idx)
self.base_lin_vel[envs_idx] = 0
self.base_ang_vel[envs_idx] = 0
self.robot.zero_all_dofs_velocity(envs_idx)
# reset buffers
self.last_actions[envs_idx] = 0.0
self.last_dof_vel[envs_idx] = 0.0
self.episode_length_buf[envs_idx] = 0
self.reset_buf[envs_idx] = True
# fill extras
self.extras["episode"] = {}
for key in self.episode_sums.keys():
self.extras["episode"]["rew_" + key] = (
torch.mean(self.episode_sums[key][envs_idx]).item() / self.env_cfg["episode_length_s"]
)
self.episode_sums[key][envs_idx] = 0.0
self._resample_commands(envs_idx)
def reset(self):
self.reset_buf[:] = True
self.reset_idx(torch.arange(self.num_envs, device=self.device))
return self.obs_buf, None
# ------------ reward functions----------------
def _reward_tracking_lin_vel(self):
# Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1)
return torch.exp(-lin_vel_error / self.reward_cfg["tracking_sigma"])
def _reward_tracking_ang_vel(self):
# Tracking of angular velocity commands (yaw)
ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2])
return torch.exp(-ang_vel_error / self.reward_cfg["tracking_sigma"])
def _reward_lin_vel_z(self):
# Penalize z axis base linear velocity
return torch.square(self.base_lin_vel[:, 2])
def _reward_action_rate(self):
# Penalize changes in actions
return torch.sum(torch.square(self.last_actions - self.actions), dim=1)
def _reward_similar_to_default(self):
# Penalize joint poses far away from default pose
return torch.sum(torch.abs(self.dof_pos - self.default_dof_pos), dim=1)
def _reward_base_height(self):
# Penalize base height away from target
return torch.square(self.base_pos[:, 2] - self.reward_cfg["base_height_target"])