-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
41 lines (33 loc) · 1.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from config import configs
from trainer import Trainer
from utils import SIC_dataset
import numpy as np
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
print(configs.__dict__)
start_train, end_train = configs.train_period
start_eval, end_eval = configs.eval_period
input_gap = configs.input_gap
input_length = configs.input_length
pred_shift = configs.pred_shift
output_length = configs.output_length
print(f'loading train dataset from {start_train} to {end_train}')
dataset_train = SIC_dataset(configs.full_data_path, start_train, end_train,
input_gap, input_length, pred_shift, output_length,
samples_gap=1, sie_mask_period=configs.sie_mask_period)
print(dataset_train.GetDataShape())
print(dataset_train.months[0])
print(dataset_train.months[-1])
print(f'loading eval dataset from {start_eval} to {end_eval}')
dataset_eval = SIC_dataset(configs.full_data_path, start_eval, end_eval,
input_gap, input_length, pred_shift, output_length,
samples_gap=1, sie_mask_period=configs.sie_mask_period)
print(dataset_eval.GetDataShape())
print(dataset_eval.months[0])
print(dataset_eval.months[-1])
trainer = Trainer(configs, np.load('land_mask.npy'))
trainer.save_configs('config_train.pkl')
trainer.train(dataset_train, dataset_eval, 'checkpoint.chk')
print('\n######training finished!########\n')