-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
57 lines (49 loc) · 1.82 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from PIL import Image
from model import lenet
model = lenet.Lenet()
model.load_state_dict(torch.load("saved_model.pth"))
model.eval()
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
def predict_image(image_path, model):
print("recognizing...")
transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize((28, 28)),
transforms.ToTensor()
])
image = Image.open(image_path)
image = transform(image).unsqueeze(0) # 添加一个维度作为批处理
model.eval()
with torch.no_grad():
output = model(image)
_, predicted = torch.max(output.data, 1)
return predicted.item()
while True:
order = input("Please enter the MODE(predict/evaluate):")
if order == "predict" or order == "evaluate":
break
else:
print("Unrecognized order.PLEASE REINPUT!")
if order == "evaluate":
print("evaluating...")
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {:.2f}%'.format(100 * correct / total))
else:
image_path = 'E:\BianCheng\MACHINE_LEARNING\input\\test_7.png'
try:
predicted_label = predict_image(image_path, model)
print("I think this figure is:", predicted_label)
except Exception as e:
print("Something went wrong:", e)