-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
117 lines (93 loc) · 3.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import cv2
import timeit
import csv
import tracking
import dataset
import detector_vo
import parser_vo
import preprocess
# PARSING PHASES OF VO
a, b, args = parser_vo.parse()
#initialization
ground_truth = dataset.getTruePose()
img_1 = dataset.getImages(0)
img_2 = dataset.getImages(1)
#conversion of RGB frames to Grayscale
if len(img_1) == 3:
gray_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2GRAY)
gray_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2GRAY)
else:
gray_1 = img_1
gray_2 = img_2
img_1 = preprocess.preprocessing(b, img_1)
img_2 = preprocess.preprocessing(b, img_2)
#EXTRACTION + DESCRIPTION
detector, filename, pose = detector_vo.detector(a)
kp1 = detector.detect(img_1)
p1 = np.array([ele.pt for ele in kp1],dtype='float32')
#calculating the features of frame i+1 using Optical flow
p1, p2 = tracking.featureTracking(gray_1, gray_2, p1)
#Camera parameters
fc = 718.8560
pp = (607.1928, 185.2157)
K = dataset.getK()
font = cv2.FONT_HERSHEY_PLAIN
#RANSAC and essential matrix is found
E, mask = cv2.findEssentialMat(p2, p1, fc, pp, cv2.RANSAC,0.999,1.0);
_, R, t, mask = cv2.recoverPose(E, p2, p1,focal=fc, pp = pp)
#initialize some parameters
MAX_FRAME = 4540
MIN_NUM_FEAT = 1500
preFeature = p2
preImage = gray_2
R_f = R
t_f = t
start = timeit.default_timer()
traj = np.zeros((600, 600, 3), dtype=np.uint8)
maxError = 0
for numFrame in range(2, MAX_FRAME):
if (len(preFeature) < MIN_NUM_FEAT):
feature = detector.detect(preImage)
preFeature = np.array([ele.pt for ele in feature],dtype='float32')
curImage_c = dataset.getImages(numFrame)
if len(curImage_c) == 3:
curImage = cv2.cvtColor(curImage_c, cv2.COLOR_BGR2GRAY)
else:
curImage = curImage_c
kp1 = detector.detect(curImage)
preFeature, curFeature = tracking.featureTracking(preImage, curImage, preFeature)
E, mask = cv2.findEssentialMat(curFeature, preFeature, fc, pp, cv2.RANSAC,0.999,1.0)
_, R, t, mask = cv2.recoverPose(E, curFeature, preFeature, focal=fc, pp = pp)
truth_x, truth_y, truth_z, absolute_scale = dataset.getAbsoluteScale(ground_truth, numFrame)
if absolute_scale > 0.1:
t_f = t_f + absolute_scale*R_f.dot(t)
R_f = R.dot(R_f)
preImage = curImage
preFeature = curFeature
rt = [R_f[0][0],R_f[0][1],R_f[0][2],float(t_f[0]),R_f[1][0],R_f[1][1],R_f[1][2],float(t_f[1]),R_f[2][0],R_f[2][1],R_f[2][2],float(t_f[2])]
draw_x, draw_y = int(t_f[0])+300, int(t_f[2]) + 100
draw_tx, draw_ty = int(truth_x)+300, int(truth_z) + 100
curError = np.sqrt((t_f[0]-truth_x)**2 + (t_f[1]-truth_y)**2 + (t_f[2]-truth_z)**2)
if (curError > maxError):
maxError = curError
cv2.circle(traj, (draw_x, draw_y) ,1, (0,0,255), 2)
cv2.circle(traj, (draw_tx, draw_ty) ,1, (255,0,0), 2)
cv2.rectangle(traj, (10, 30), (550, 50), (0,0,0), cv2.FILLED)
text = "Coordinates: x ={0:02f}m y = {1:02f}m z = {2:02f}m".format(round(float(t_f[0]),2), round(float(t_f[1]),2), round(float(t_f[2]),2))
cv2.putText(traj, text, (10,50), cv2.FONT_HERSHEY_PLAIN, 1, (255,255,255), 1, 8)
cv2.imshow( "Trajectory", traj )
[a] = curError
nos = [numFrame, a, len(curFeature), len(preFeature), t_f[0], t_f[1], t_f[2]]
with open(filename, 'a') as f:
writer = csv.writer(f)
writer.writerow(nos)
with open(pose, 'a') as f:
writer = csv.writer(f)
writer.writerow(rt)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
stop = timeit.default_timer()
cv2.imwrite('result/trajectory.png', traj)
cv2.destroyAllWindows()