-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyBot.go
1384 lines (1273 loc) · 39.5 KB
/
MyBot.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package main
import (
"bytes"
"errors"
"fmt"
"hlt"
"os"
"sort"
)
const logFile = "log.txt"
const unowned = 0
const maxCost = 10000
const maxStrength = 255
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func opposite(direction hlt.Direction) hlt.Direction {
switch direction {
case hlt.NORTH:
return hlt.SOUTH
case hlt.EAST:
return hlt.WEST
case hlt.SOUTH:
return hlt.NORTH
case hlt.WEST:
return hlt.EAST
default:
return hlt.STILL
}
}
func LocationString(location hlt.Location) string {
return fmt.Sprintf("(x:%d, y:%d)", location.X, location.Y)
}
func DirectionString(direction hlt.Direction) string {
switch direction {
case hlt.NORTH:
return "NORTH"
case hlt.EAST:
return "EAST"
case hlt.SOUTH:
return "SOUTH"
case hlt.WEST:
return "WEST"
default:
return "STILL"
}
}
func DirectionArrowString(direction hlt.Direction) string {
switch direction {
case hlt.NORTH:
return "^"
case hlt.EAST:
return ">"
case hlt.SOUTH:
return "v"
case hlt.WEST:
return "<"
default:
return "x"
}
}
func ScoreString(os OwnerScore) string {
return fmt.Sprintf("Score(p:%d, s:%d, t:%d)[%.3f]", os.Production, os.Strength, os.Territory, os.SingleScore())
}
/*
███████ ████████ █████ ██████ ██ ██
██ ██ ██ ██ ██ ██ ██
███████ ██ ███████ ██ █████
██ ██ ██ ██ ██ ██ ██
███████ ██ ██ ██ ██████ ██ ██
*/
type stackable struct {
Content *Cell
Previous *stackable
Priority int
}
// Stack is a FILO collection
type Stack struct {
_top *stackable
_length int
}
// NewStack is a constructor
func NewStack() *Stack {
return &Stack{
_top: nil,
_length: 0,
}
}
// Contains returns true if the stack contain the cell.
func (s *Stack) Contains(cell *Cell) bool {
if s.isEmpty() {
return false
}
check := s._top
for check.Content != cell && check.Previous != nil {
check = check.Previous
}
return check.Content == cell
}
// Peek at top item
func (s *Stack) Peek() (*Cell, error) {
if s.isEmpty() {
return nil, errors.New("Empty Stack")
}
return s._top.Content, nil
}
// Push new item into the Stack
func (s *Stack) Push(c *Cell) {
newTop := &stackable{Content: c, Previous: s._top, Priority: maxCost}
s._top = newTop
s._length++
}
// Pop the top item off of the stack
func (s *Stack) Pop() (*Cell, error) {
if s.isEmpty() {
return nil, errors.New("Empty Stack")
}
pop := s._top
cell := pop.Content
s._top = pop.Previous
pop.Previous = nil
s._length--
return cell, nil
}
// Push into stack to a depth determined by cell's priority
func (s *Stack) PushPriority(c *Cell, priority int) {
if s._top == nil || priority < s._top.Priority {
newTop := &stackable{Content: c, Previous: s._top, Priority: priority}
s._top = newTop
s._length++
return
}
prev := s._top.Previous
current := s._top
for prev != nil {
// insert cell between current and previous
if priority < prev.Priority {
current.Previous = &stackable{Content: c, Previous: prev, Priority: priority}
s._length++
return
}
current = prev
prev = prev.Previous
}
// at end
current.Previous = &stackable{Content: c, Previous: nil, Priority: priority}
s._length++
}
func (s *Stack) isEmpty() bool {
return s._length == 0
}
func (s *Stack) isNotEmpty() bool {
return !s.isEmpty()
}
func log(a ...interface{}) {
f, err := os.OpenFile(logFile, os.O_APPEND|os.O_WRONLY, os.ModeAppend)
if err != nil {
panic(err)
}
str := fmt.Sprintln(a)
if _, err = f.WriteString(str); err != nil {
panic(err)
}
f.Sync()
f.Close()
}
type CellComp struct {
Cell *Cell
Value int
}
type CellComps []CellComp
func (slice CellComps) Len() int {
return len(slice)
}
func (slice CellComps) Less(i, j int) bool {
return slice[i].Value < slice[j].Value
}
func (slice CellComps) Swap(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
}
func SortNeighborsByDistanceToCell(cell *Cell, neighbors []*Cell) []*Cell {
sortCellComps := CellComps{}
for _, neighbor := range neighbors {
distance := cell.Cells.GameMap.GetDistance(cell.Location, neighbor.Location)
sortCellComps = append(sortCellComps, CellComp{Cell: neighbor, Value: distance})
}
sort.Sort(sortCellComps)
sortedCells := make([]*Cell, 0, len(neighbors))
for _, cellComp := range sortCellComps {
sortedCells = append(sortedCells, cellComp.Cell)
}
return sortedCells
}
// CellTest is a function used to filter or include cells that meet described criteria
type CellTest func(cell *Cell) bool
// CellCost is a function used to calculate the cost of moving to a cell from a another cell that itself has a cost to get to.
type CellCost func(via *Cell, cell *Cell, field *FlowField) int
// FlowField is a location and a map of strength costs to that location
type FlowField struct {
Destinations []*Cell
Directions map[hlt.Location]hlt.Direction
Field map[hlt.Location]int
}
// PathString returns a string representing the pathing indicated by params
func PathString(prev []hlt.Direction, next hlt.Direction) string {
dirs := make(map[hlt.Direction]bool)
dirs[next] = true
for _, dir := range prev {
dirs[dir] = true
}
north := dirs[hlt.NORTH] || next == hlt.NORTH
east := dirs[hlt.EAST] || next == hlt.EAST
south := dirs[hlt.SOUTH] || next == hlt.SOUTH
west := dirs[hlt.WEST] || next == hlt.WEST
if north && east && south && west {
return fmt.Sprintf("x")
// return fmt.Sprintf("%c", 0x253C) // ┼
}
if north && east && south && !west {
return fmt.Sprintf("%c", 0x251C) // ├
} else if north && east && !south && west {
return fmt.Sprintf("%c", 0x2534) // ┴
} else if north && !east && south && west {
return fmt.Sprintf("%c", 0x2524) // ┤
} else if !north && east && south && west {
return fmt.Sprintf("%c", 0x252C) // ┬
}
if north && east && !south && !west {
return fmt.Sprintf("%c", 0x2514) // └
} else if north && !east && !south && west {
return fmt.Sprintf("%c", 0x2518) // ┘
} else if !north && !east && south && west {
return fmt.Sprintf("%c", 0x2510) // ┐
} else if !north && east && south && !west {
return fmt.Sprintf("%c", 0x250C) // ┌
} else if north && !east && south && !west {
return fmt.Sprintf("%c", 0x2502) // │
} else if !north && east && !south && west {
return fmt.Sprintf("%c", 0x2500) // ─
}
if north {
return fmt.Sprintf("%c", 0x2575) // ╵
} else if east {
return fmt.Sprintf("%c", 0x2576) // ╶
} else if south {
return fmt.Sprintf("%c", 0x2577) // ╷
} else if west {
return fmt.Sprintf("%c", 0x2574) // ╴
}
return fmt.Sprintf(" ")
// return fmt.Sprintf("%c", 0x253C) // ┼
}
// FlowString converts the field into a string
func FlowString(config int, ff *FlowField, c *Cells) string {
var buffer bytes.Buffer
for y := c.Y; y < c.Y+c.Height; y++ {
yf := y % c.GameMap.Height
for x := c.X; x < c.X+c.Width; x++ {
xf := x % c.GameMap.Width
location := hlt.NewLocation(xf, yf)
if _, ok := ff.Field[location]; ok {
if config == 0 {
buffer.WriteString(fmt.Sprintf("%3d", ff.Field[location]))
} else if config == 1 {
buffer.WriteString(fmt.Sprintf("%v ", DirectionArrowString(ff.Directions[location])))
} else if config == 2 {
dirs := make([]hlt.Direction, 0, 4)
for _, direction := range hlt.CARDINALS {
if dir, ok := ff.Directions[c.GetLocation(location, direction)]; ok && dir == opposite(direction) {
dirs = append(dirs, direction)
}
}
if contains(c.Get(location.X, location.Y), ff.Destinations) {
buffer.WriteString(fmt.Sprintf("[%s]", PathString(dirs, ff.Directions[location])))
} else {
buffer.WriteString(fmt.Sprintf(" %s ", PathString(dirs, ff.Directions[location])))
}
}
} else {
buffer.WriteString(" ")
}
}
buffer.WriteString("\n")
}
return buffer.String()
}
func NewEmptyFlow() *FlowField {
return &FlowField{
Destinations: make([]*Cell, 0, 0),
Directions: make(map[hlt.Location]hlt.Direction),
Field: make(map[hlt.Location]int),
}
}
// NewFlowField is a constructor. Limit cell can stop field generation beyond that cell.
func NewFlowField(destinations []*Cell, cf CellCost) *FlowField {
field := NewEmptyFlow()
field.Destinations = destinations
stack := NewStack()
// limitCost := maxCost
for _, destination := range destinations {
field.Directions[destination.Location] = hlt.STILL
cost := cf(nil, destination, field)
field.Field[destination.Location] = cost
stack.PushPriority(destination, cost)
}
oppCount := 0
for stack.isNotEmpty() {
if cell, err := stack.Pop(); err == nil {
oppCount++
for dir, neighbor := range cell.Neighbors() {
direction := hlt.Direction(dir + 1)
newCost := cf(cell, neighbor, field)
if value, ok := field.Field[neighbor.Location]; newCost < maxCost && (!ok || value > newCost) {
field.Directions[neighbor.Location] = opposite(direction)
field.Field[neighbor.Location] = newCost
stack.PushPriority(neighbor, newCost)
}
}
}
}
return field
}
// NewBorderFlow is a constructor
func NewBorderFlow(owner int, borders []*Cell) *FlowField {
return NewFlowField(borders, func(via *Cell, cell *Cell, field *FlowField) int {
if cell.Owner != owner {
return maxCost
}
if via != nil {
return field.Field[via.Location] + cell.Production
}
return cell.Production
})
}
// NewBodyFlow is like Border, but augmented to draw more strength to edges under threat
func NewBodyFlow(owner int, borders []*Cell, threats map[int]*FlowField, highProds map[hlt.Location]*FlowField) *FlowField {
nearestProdOwner := owner
var nearestProdLoc hlt.Location
nearestProdCost := maxCost
var nearestThreatTeam int
nearestThreadCost := 0
for _, borderCell := range borders {
for location, flow := range highProds {
prodOwner := borderCell.Cells.Get(location.X, location.Y).Owner
if flow.Field[borderCell.Location] < nearestProdCost {
nearestProdOwner = prodOwner
nearestProdLoc = location
nearestProdCost = flow.Field[borderCell.Location]
}
}
for team, flow := range threats {
if team != owner {
if flow.Field[borderCell.Location] > nearestThreadCost {
nearestThreatTeam = team
nearestThreadCost = flow.Field[borderCell.Location]
}
}
}
}
return NewFlowField(borders, func(via *Cell, cell *Cell, field *FlowField) int {
if cell.Owner != owner {
return maxCost
}
if via != nil {
return field.Field[via.Location] + cell.Production
}
if threatField, ok := threats[nearestThreatTeam]; ok && nearestThreatTeam != unowned && nearestThreatTeam != owner {
return cell.Production - threatField.Field[cell.Location]
}
if prodField, ok := highProds[nearestProdLoc]; ok && nearestProdOwner != owner {
return cell.Production + prodField.Field[cell.Location]
}
return cell.Production
})
}
// NewProdFlow is a constructor
func NewProdFlow(cell *Cell) *FlowField {
return NewFlowField([]*Cell{cell}, func(via *Cell, cell *Cell, field *FlowField) int {
if via != nil {
return field.Field[via.Location] + cell.Production
}
return cell.Production
})
}
// NewStrengthFlow is a constructor. Produces a field where cost is the strength between
// any cell and the one provided.
func NewStrengthFlow(cell *Cell) *FlowField {
return NewFlowField([]*Cell{cell}, func(via *Cell, cell *Cell, field *FlowField) int {
if via != nil {
return field.Field[via.Location] + cell.Strength
}
return cell.Strength
})
}
func contains(cell *Cell, cells []*Cell) bool {
for _, otherCell := range cells {
if otherCell == cell {
return true
}
}
return false
}
// NewThreatFlow is a constructor
func NewThreatFlow(owner int, borders []*Cell) *FlowField {
field := NewFlowField(borders, func(via *Cell, cell *Cell, field *FlowField) int {
if contains(cell, borders) {
return 0 - cell.Strength
} else if cell.Owner == owner {
return maxCost
}
if via != nil {
if field.Field[via.Location] < 0 {
return max(0, field.Field[via.Location]+cell.Strength)
}
return maxCost
}
return 0 - cell.Strength
})
// invert value to have field represent remaining strength
for loc, value := range field.Field {
field.Field[loc] = 0 - value
}
return field
}
func ThreatFlows(cells *Cells) map[int]*FlowField {
fields := make(map[int]*FlowField)
for owner, ownedCells := range cells.ByOwner {
fields[owner] = NewThreatFlow(owner, ownedCells.BorderCells())
// log(FlowString(0, fields[owner], cells))
}
return fields
}
/*
██████ ██████ ████████
██ ██ ██ ██ ██
██████ ██ ██ ██
██ ██ ██ ██ ██
██████ ██████ ██
*/
// Bot is in control of Agents for all owned cells.
type Bot struct {
Owner int
Cells *Cells
// GameMap hlt.GameMap
// ToBorder *FlowField
BodyFlow *FlowField
ThreatFlows map[int]*FlowField
ToHighestProd map[hlt.Location]*FlowField
StartingLocations map[int]hlt.Location
}
// NewBot is a constructor
func NewBot(owner int, gameMap hlt.GameMap) *Bot {
bot := &Bot{
Owner: owner,
Cells: NewCells(0, 0, gameMap.Width, gameMap.Height, gameMap),
// GameMap: gameMap,
BodyFlow: NewEmptyFlow(),
ThreatFlows: make(map[int]*FlowField),
ToHighestProd: make(map[hlt.Location]*FlowField),
StartingLocations: make(map[int]hlt.Location),
}
// set starting positions for all teams to their center of mass location
for team, ownedCells := range bot.Cells.ByOwner {
com := ownedCells.CenterOfMass()
bot.StartingLocations[team] = bot.Cells.GetSafeLocation(com.X, com.Y)
}
// generate limited fields for all the highest production cells.
highestProdCells := bot.Cells.GetHighestProductionCells()
// nearestCell := highestProdCells[0]
// nearestDist := gameMap.GetDistance(bot.StartingLocations[owner], nearestCell.Location)
// for _, highProdCell := range highestProdCells[1:] {
// distance := gameMap.GetDistance(bot.StartingLocations[owner], highProdCell.Location)
// if distance < nearestDist {
// nearestDist = distance
// nearestCell = highProdCell
// }
// }
// log("Highest Prod:", len(highestProdCells))
// bot.ToHighestProd[nearestCell.Location] = NewStrengthFlow(nearestCell)
for _, cell := range highestProdCells {
bot.ToHighestProd[cell.Location] = NewStrengthFlow(cell)
// log(FlowString(2, bot.ToHighestProd[cell.Location], bot.Cells))
}
return bot
}
// Update takes in new map data and updates agents following a turn
func (b *Bot) Update(gameMap hlt.GameMap) {
// b.GameMap = gameMap
b.Cells.Update(gameMap)
// b.ToBorder = NewBorderFlow(b.Owner, b.BorderCells())
b.ThreatFlows = ThreatFlows(b.Cells)
b.BodyFlow = NewBodyFlow(b.Owner, b.BorderCells(), b.ThreatFlows, b.ToHighestProd)
// log(FlowString(2, b.BodyFlow, b.Cells))
}
// OwnedCells returns the Cells owned by this Bot
func (b *Bot) OwnedCells() []*Cell {
return b.Cells.ByOwner[b.Owner].OwnedCells()
}
// BorderCells returns the Cells owned by this Bot that have a non-owner-owned neighbor
func (b *Bot) BorderCells() []*Cell {
return b.Cells.ByOwner[b.Owner].BorderCells()
}
// BodyCells returns the Cells owned by this Bot that have only owner-owned neighbors
func (b *Bot) BodyCells() []*Cell {
return b.Cells.ByOwner[b.Owner].BodyCells()
}
func (b *Bot) Engaged() bool {
for team, flow := range b.ThreatFlows {
if team != unowned && team != b.Owner {
for _, cell := range b.BorderCells() {
if flow.Field[cell.Location] > 0 {
return true
}
}
}
}
return false
}
// Moves puts together a list of Moves for each Agent owned
func (b *Bot) Moves() hlt.MoveSet {
var moves = hlt.MoveSet{}
for _, cell := range b.BorderCells() {
if b.Engaged() {
moves = append(moves, b.MoveStrategyV5(cell))
} else {
moves = append(moves, b.MoveStrategyProfit(cell))
}
}
for _, cell := range b.BodyCells() {
if cell.Strength > cell.Production*5 {
moves = append(moves, hlt.Move{Location: cell.Location, Direction: b.BodyFlow.Directions[cell.Location]})
} else {
moves = append(moves, hlt.Move{Location: cell.Location, Direction: hlt.STILL})
}
}
return moves
}
func (b *Bot) MoveStrategyProfit(cell *Cell) hlt.Move {
var nearestProdLoc hlt.Location
nearestProdCost := maxCost
for location, flow := range b.ToHighestProd {
if flow.Field[cell.Location] < nearestProdCost {
nearestProdLoc = location
nearestProdCost = flow.Field[cell.Location]
}
}
if nearestProdCost != maxCost && b.Cells.Get(nearestProdLoc.X, nearestProdLoc.Y).Owner != b.Owner {
direction := b.ToHighestProd[nearestProdLoc].Directions[cell.Location]
destination := b.Cells.GetCell(cell.Location, direction)
if cell.Strength > destination.Strength {
return hlt.Move{Location: cell.Location, Direction: direction}
}
return hlt.Move{Location: cell.Location, Direction: hlt.STILL}
}
return b.MoveStrategyV5(cell)
}
func (b *Bot) MoveStrategyV5(cell *Cell) hlt.Move {
targetDirection := hlt.STILL
var targetCell *Cell
targetHeuristic := 0.0
for dir, neighbor := range cell.Neighbors() {
direction := hlt.Direction(dir + 1)
if neighbor.Owner != b.Owner {
otherHeuristic := neighbor.Heuristic(b.Owner)
if targetCell == nil || otherHeuristic > targetHeuristic {
targetCell = neighbor
targetDirection = direction
targetHeuristic = otherHeuristic
}
}
}
if targetCell != nil && targetCell.Strength < cell.Strength {
return hlt.Move{Location: cell.Location, Direction: targetDirection}
}
return hlt.Move{Location: cell.Location, Direction: hlt.STILL}
}
func (b *Bot) MoveStrategyOverkill(cell *Cell) hlt.Move {
maxOverkillDirection := hlt.STILL
maxOverkill := 0
for _, direction := range hlt.Directions {
otherCell := b.Cells.GetCell(cell.Location, direction)
overkill := otherCell.Overkill(b.Owner, cell.Strength)
if overkill > maxOverkill {
maxOverkillDirection = direction
maxOverkill = overkill
}
}
return hlt.Move{
Location: cell.Location,
Direction: maxOverkillDirection,
}
}
// MoveStrategyProjection is an Expensive movement strategy where board state
// is projected for all possible moves around a cell, from which we pick the best.
func (b *Bot) MoveStrategyProjection(cell *Cell) hlt.Move {
return hlt.Move{
Location: cell.Location,
Direction: b.BestMoveFromProjection(cell.Location),
}
}
const simSize = 5
// ProjectedCells is a small cell space for simulating moves
func (b *Bot) ProjectedCells(location hlt.Location) *Cells {
return NewCells(location.X-simSize/2, location.Y-simSize/2, simSize, simSize, b.Cells.GameMap)
}
// ProjectedMoves is the list of locations that will need moves in order to fully simulate Cells
func (b *Bot) ProjectedMoves(excluded hlt.Location, cells *Cells) []hlt.Location {
owner := cells.Get(excluded.X, excluded.Y).Owner
cellsNeedMoves := cells.GetCells(func(cell *Cell) bool {
return cell.Owner != unowned && cell.Owner != owner
})
movesNeeded := make([]hlt.Location, 0, len(cellsNeedMoves))
for _, cell := range cellsNeedMoves {
if cell.Location != excluded {
movesNeeded = append(movesNeeded, cell.Location)
}
}
return movesNeeded
}
// BestMoveFromProjection projects all possible moves for each cell in a [simSize x simSize] copy around the
// given location. Returning the move that yields the highest score for the location owner
func (b *Bot) BestMoveFromProjection(location hlt.Location) hlt.Direction {
cells := b.ProjectedCells(location)
movesNeeded := b.ProjectedMoves(location, cells)
owner := cells.Get(location.X, location.Y).Owner
maxDirection := hlt.STILL
maxSingleScore := 0.0
for _, direction := range hlt.Directions {
if cells.InBounds(cells.GetLocation(location, direction)) {
prevOwnerScore := NewOwnerScore(cells.ByOwner[owner])
moves := hlt.MoveSet{hlt.Move{Location: location, Direction: direction}}
scores := Project(cells, moves, movesNeeded, 0)
deltaScore := NewDeltaScore(prevOwnerScore, scores[owner])
singleScore := deltaScore.SingleScore()
// log(DirectionString(direction), ScoreString(deltaScore))
if singleScore > maxSingleScore {
maxDirection = direction
maxSingleScore = singleScore
}
}
}
return maxDirection
}
// Project by simulating cells with picked moves, or if locations still need moves
// pick the best move for the location owner.
func Project(cells *Cells, moves hlt.MoveSet, movesNeeded []hlt.Location, depth int) map[int]OwnerScore {
if len(movesNeeded) == 0 {
// all moves made, simulate board and return scores
newCells := cells.Simulate(moves)
scores := make(map[int]OwnerScore)
for owner, ownerCells := range newCells.ByOwner {
scores[owner] = NewOwnerScore(ownerCells)
}
return scores
}
location := movesNeeded[0]
owner := cells.Get(location.X, location.Y).Owner
var maxScores map[int]OwnerScore
maxScore := 0.0
for _, direction := range hlt.Directions {
if cells.InBounds(cells.GetLocation(location, direction)) {
prevOwnerScore := NewOwnerScore(cells.ByOwner[owner])
moves = append(moves, hlt.Move{Location: location, Direction: direction})
scores := Project(cells, moves, movesNeeded[1:], depth+1)
singleScore := NewDeltaScore(prevOwnerScore, scores[owner]).SingleScore()
if singleScore > maxScore {
maxScores = scores
maxScore = singleScore
}
}
}
return maxScores
}
const pMod = 0.6
const sMod = 0.3
const tMod = 0.2
type OwnerScore struct {
Production int
Strength int
Territory int
}
func (os OwnerScore) SingleScore() float64 {
return pMod*(float64(os.Production)/25.0) + sMod*(float64(os.Strength)/255.0) + tMod*(float64(os.Territory)/25.0)
}
func NewOwnerScore(ownedCells *OwnedCells) OwnerScore {
return OwnerScore{
Production: ownedCells.TotalProduction,
Strength: ownedCells.TotalStrength,
Territory: ownedCells.TotalTerritory,
}
}
func NewDeltaScore(prev OwnerScore, next OwnerScore) OwnerScore {
return OwnerScore{
Production: next.Production - prev.Production,
Strength: next.Strength - prev.Strength,
Territory: next.Territory - prev.Territory,
}
}
// OwnedCells collection of Cells belonging to the same owner with some stats
type OwnedCells struct {
TotalProduction int
TotalStrength int
TotalTerritory int
_cells []*Cell
_borderCells []*Cell
_bodyCells []*Cell
_totalX int
_totalY int
_calcDone bool
}
// NewOwnedCells is a constructor
func NewOwnedCells() *OwnedCells {
return &OwnedCells{
_cells: make([]*Cell, 0, 1),
_borderCells: make([]*Cell, 0, 1),
_bodyCells: make([]*Cell, 0, 1),
_calcDone: false,
}
}
// Add a cell to the owned cells
func (o *OwnedCells) Add(cell *Cell) {
o.TotalProduction += cell.Production
o.TotalStrength += cell.Strength
o.TotalTerritory++
o._cells = append(o._cells, cell)
o._calcDone = false
}
// Reset removes all owned cells and resets stats
func (o *OwnedCells) Reset() {
o._cells = make([]*Cell, 0, len(o._cells))
o.TotalProduction = 0
o.TotalStrength = 0
o.TotalTerritory = 0
o._borderCells = make([]*Cell, 0, len(o._borderCells))
o._bodyCells = make([]*Cell, 0, len(o._bodyCells))
o._totalX = 0
o._totalY = 0
o._calcDone = false
}
// CenterOfMass is the centroid for the owned shape
func (o *OwnedCells) CenterOfMass() hlt.Location {
return hlt.NewLocation(o._totalX/len(o._cells), o._totalY/len(o._cells))
}
// OwnedCells is the list of all owned cells
func (o *OwnedCells) OwnedCells() []*Cell {
return o._cells
}
// BorderCells is the list of only border owned cells
func (o *OwnedCells) BorderCells() []*Cell {
if !o._calcDone {
o.Calc()
}
return o._borderCells
}
// BodyCells is the list of only body owned cells
func (o *OwnedCells) BodyCells() []*Cell {
if !o._calcDone {
o.Calc()
}
return o._bodyCells
}
// Calc splits the cells into Border and Body lists. Expensive.
func (o *OwnedCells) Calc() {
for _, cell := range o._cells {
if cell.Border() {
o._borderCells = append(o._borderCells, cell)
} else {
o._bodyCells = append(o._bodyCells, cell)
}
}
o._calcDone = true
}
/*
██████ ███████ ██ ██ ███████
██ ██ ██ ██ ██
██ █████ ██ ██ ███████
██ ██ ██ ██ ██
██████ ███████ ███████ ███████ ███████
*/
// Cells represents a subview of the gameMap. Simulated forward with
// a set of moves, or updated from turn to turn by a bot.
type Cells struct {
Contents map[int]map[int]*Cell
Height int
Width int
X int
Y int
// Original map dimensions
GameMap hlt.GameMap
// _sourceHeight int
// _sourceWidth int
// Ownership changes between turns
ByOwner map[int]*OwnedCells
// Production stats
AvgProduction int
MaxProduction int
MinProduction int
}
// NewCells is a constructor
func NewCells(x int, y int, width int, height int, gameMap hlt.GameMap) *Cells {
x = (x + gameMap.Width) % gameMap.Width
y = (y + gameMap.Height) % gameMap.Height
cells := &Cells{
Height: height,
Width: width,
X: x,
Y: y,
GameMap: gameMap,
// _sourceHeight: gameMap.Height,
// _sourceWidth: gameMap.Width,
ByOwner: make(map[int]*OwnedCells),
AvgProduction: 0,
MaxProduction: 0,
MinProduction: 255,
}
contents := make(map[int]map[int]*Cell)
sum := 0
for i := y; i < y+height; i++ {
yf := i % gameMap.Height
contents[yf] = make(map[int]*Cell)
for j := x; j < x+width; j++ {
xf := j % gameMap.Width
site := gameMap.Contents[yf][xf]
cell := NewCell(cells, gameMap.Contents[yf][xf], xf, yf)
contents[yf][xf] = cell
// Add to Owner's OwnedCells
if _, ok := cells.ByOwner[site.Owner]; !ok {
cells.ByOwner[site.Owner] = NewOwnedCells()
}
cells.ByOwner[site.Owner].Add(cell)
// update Max
if site.Production > cells.MaxProduction {
cells.MaxProduction = site.Production
}
// update Min
if site.Production < cells.MinProduction {
cells.MinProduction = site.Production
}
// update Sum for Avg
sum += site.Production
}
}
cells.AvgProduction = sum / (width * height)
cells.Contents = contents
return cells
}
// Clone produces a copy of the Cells containing new copies of all contained cells
func (c *Cells) Clone() *Cells {
clone := &Cells{
Height: c.Height,
Width: c.Width,
X: c.X,
Y: c.Y,
GameMap: c.GameMap,
ByOwner: make(map[int]*OwnedCells),
AvgProduction: c.AvgProduction,
MaxProduction: c.MaxProduction,
MinProduction: c.MinProduction,
}
contents := make(map[int]map[int]*Cell)
for y := c.Y; y < c.Y+c.Height; y++ {
yf := y % c.GameMap.Height
contents[yf] = make(map[int]*Cell)
for x := c.X; x < c.X+c.Width; x++ {
xf := x % c.GameMap.Width
cell := c.Contents[yf][xf].Clone(clone)
contents[yf][xf] = cell
// Add to Owner's OwnedCells
if _, ok := clone.ByOwner[cell.Owner]; !ok {
clone.ByOwner[cell.Owner] = NewOwnedCells()
}
clone.ByOwner[cell.Owner].Add(cell)
}
}
clone.Contents = contents
return clone
}
// Update Cells with Site data from provided GameMap
func (c *Cells) Update(gameMap hlt.GameMap) {
for _, ownedCells := range c.ByOwner {
ownedCells.Reset()
}
// Cells my not be the full size of gameMap, only iterate Cells contents
for y := c.Y; y < c.Y+c.Height; y++ {
yf := y % c.GameMap.Height
for x := c.X; x < c.X+c.Width; x++ {
xf := x % c.GameMap.Width
site := gameMap.Contents[yf][xf]
cell := c.Get(xf, yf)
cell.Update(site)
// Add to Owner's OwnedCells
if _, ok := c.ByOwner[site.Owner]; !ok {
c.ByOwner[site.Owner] = NewOwnedCells()
}
c.ByOwner[site.Owner].Add(cell)
}
}
}
// Simulate applies moves in the same way halite.io would... I think.
func (c *Cells) Simulate(moves hlt.MoveSet) *Cells {
clone := c.Clone()
// used to prevent production on cells that had movement this round
conflictLocations := make(map[hlt.Location]bool)
// forces which have moved or been recruited by moving forces,
// and will attack destination + Cardinal opposing forces