-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathapp.py
106 lines (68 loc) · 2.01 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
from textblob import TextBlob
import pandas as pd
import altair as alt
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Fxn
def convert_to_df(sentiment):
sentiment_dict = {'polarity':sentiment.polarity,'subjectivity':sentiment.subjectivity}
sentiment_df = pd.DataFrame(sentiment_dict.items(),columns=['metric','value'])
return sentiment_df
def analyze_token_sentiment(docx):
analyzer = SentimentIntensityAnalyzer()
pos_list = []
neg_list = []
neu_list = []
for i in docx.split():
res = analyzer.polarity_scores(i)['compound']
if res > 0.1:
pos_list.append(i)
pos_list.append(res)
elif res <= -0.1:
neg_list.append(i)
neg_list.append(res)
else:
neu_list.append(i)
result = {'positives':pos_list,'negatives':neg_list,'neutral':neu_list}
return result
def main():
st.title("Sentiment Analysis NLP App")
st.subheader("Streamlit Projects")
menu = ["Home","About"]
choice = st.sidebar.selectbox("Menu",menu)
if choice == "Home":
st.subheader("Home")
with st.form(key='nlpForm'):
raw_text = st.text_area("Enter Text Here")
submit_button = st.form_submit_button(label='Analyze')
# layout
col1,col2 = st.columns(2)
if submit_button:
with col1:
st.info("Results")
sentiment = TextBlob(raw_text).sentiment
st.write(sentiment)
# Emoji
if sentiment.polarity > 0:
st.markdown("Sentiment:: Positive :smiley: ")
elif sentiment.polarity < 0:
st.markdown("Sentiment:: Negative :angry: ")
else:
st.markdown("Sentiment:: Neutral 😐 ")
# Dataframe
result_df = convert_to_df(sentiment)
st.dataframe(result_df)
# Visualization
c = alt.Chart(result_df).mark_bar().encode(
x='metric',
y='value',
color='metric')
st.altair_chart(c,use_container_width=True)
with col2:
st.info("Token Sentiment")
token_sentiments = analyze_token_sentiment(raw_text)
st.write(token_sentiments)
else:
st.subheader("About")
if __name__ == '__main__':
main()