-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCellSolver2FullAP_Implicit.cs
407 lines (313 loc) · 13.9 KB
/
CellSolver2FullAP_Implicit.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Data;
using System.IO;
using System;
using UnityEngine;
// These are the MathNet Numerics Libraries needed
// They need to dragged and dropped into the Unity assets plugins folder!
//using SparseMatrix = MathNet.Numerics.LinearAlgebra.Double.SparseMatrix;
using Matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using Vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using MathNet.Numerics.LinearAlgebra.Double;
using MathNet.Numerics.Data.Text;
using MathNet.Numerics.LinearAlgebra.Double.Solvers;
using C2M2.NeuronalDynamics.UGX;
using C2M2.Utils;
using Grid = C2M2.NeuronalDynamics.UGX.Grid;
namespace C2M2.NeuronalDynamics.Simulation
{
public class CellSolver2FullAP_Implicit : NDSimulation
{
//Set cell biological paramaters
public const double res = 10.0;
public const double gk = 36.0;
public const double gna = 153.0;
public const double gl = 0.3;
public const double ek = -2.0;
public const double ena = 112; //70;//112.0;
public const double el = 0.6;
public const double cap = 0.09;
public const double ni = 0.5, mi = 0.4, hi = 0.2; //state probabilities
//Simulation parameters
//public const int nT = 40000; // Number of Time steps
//public const double endTime = 50; // End time value
public const double vstart = 55;
//Solution vectors
private Vector U;
private Vector M;
private Vector N;
private Vector H;
public override float GetSimulationTime() => i * (float)k;
double k;
// Keep track of i locally so that we know which simulation frame to send to other scripts
private int i = -1;
private Timer timer = new Timer();
internal OrderType orderType = OrderType.Identity;
// Secnd simulation 1D values
public override double[] Get1DValues()
{
mutex.WaitOne();
double[] curVals = null;
if (i > -1)
{
Vector curTimeSlice = U.SubVector(0, NeuronCell.vertCount);
curTimeSlice.Multiply(1, curTimeSlice);
curVals = curTimeSlice.ToArray();
}
mutex.ReleaseMutex();
return curVals;
}
// Receive new simulation 1D index/value pairings
public override void Set1DValues(Tuple<int, double>[] newValues)
{
mutex.WaitOne();
foreach (Tuple<int, double> newVal in newValues)
{
int j = newVal.Item1;
double val = newVal.Item2 * vstart;
U[j] += val;
}
mutex.ReleaseMutex();
}
protected override void Solve()
{
int nT; // Number of Time steps
double endTime = 10; // End time value
InitializeNeuronCell();
double h = NeuronCell.edgeLengths.Average();
h = 0.027 * h;
k = 0.026 * h * 1.15; //1.25; //for cell2h
//k = 0.02 * h; // for cell 10
nT = (int)System.Math.Floor(endTime / k);
Debug.Log("This cell has = " + NeuronCell.vertCount + " nodes.");
Debug.Log("Time step k = " + k);
Debug.Log("Time step size = " + h);
Debug.Log("num Time steps = " + nT);
//Debug.Log("aver edgelength = " + myCell.edgeLengths.Average());
double alpha = 1e0; //for testing purposes only! Usually set to 1
double a = 1e6; // I did a global node radius scaling here for testing purposes
// set a to 1.5 for Cell10 and set to 1 for Cell2h
double diffConst = (1 / (2 * res * cap)) * alpha;
double vRad;
double cfl = diffConst * k / h;
Debug.Log("cfl = " + cfl);
double[,] rhsMarray = new double[NeuronCell.vertCount, NeuronCell.vertCount];
double[,] lhsMarray = new double[NeuronCell.vertCount, NeuronCell.vertCount];
// reaction vector
Vector R = Vector.Build.Dense(NeuronCell.vertCount);
// temporary voltage vector
Vector tempV = Vector.Build.Dense(NeuronCell.vertCount);
int nghbrCount;
int nghbrInd;
//rhsMarray[0, 0] = 1; //Set Soma coefficient to 1
//lhsMarray[0, 0] = 1;
//rhsMarray[myCell.vertCount - 1, myCell.vertCount - 1] = 1;
//lhsMarray[myCell.vertCount - 1, myCell.vertCount - 1] = 1;
//for (int p = 1; p < myCell.vertCount - 1; p++)
Debug.Log("A node radius = " + NeuronCell.nodeData[10].nodeRadius);
for (int p = 0; p < NeuronCell.vertCount; p++)
{
nghbrCount = NeuronCell.nodeData[p].neighborIDs.Count;
//vRad = myCell.nodeData[p].nodeRadius*a;
vRad = 1e-6 * a; //radius is in micrometers
if (nghbrCount == 1)
{
rhsMarray[p, p] = 1;
lhsMarray[p, p] = 1;
}
else
{
rhsMarray[p, p] = 1 - ((double)nghbrCount) * vRad * cfl / (2 * h);
lhsMarray[p, p] = 1 + ((double)nghbrCount) * vRad * cfl / (2 * h);
for (int q = 0; q < nghbrCount; q++)
{
nghbrInd = NeuronCell.nodeData[p].neighborIDs[q];
rhsMarray[p, nghbrInd] = vRad * cfl / (2 * h);
lhsMarray[p, nghbrInd] = -vRad * cfl / (2 * h);
}
}
}
Matrix rhsM = Matrix.Build.DenseOfArray(rhsMarray);
Matrix lhsM = Matrix.Build.DenseOfArray(lhsMarray);
Matrix invlshM = lhsM.Inverse();
//GameManager.instance.DebugLogSafe("lhsM" + lhsM);
//GameManager.instance.DebugLogSafe("rhsM" + rhsM);
var sw = new StreamWriter("outputVoltage.txt");
var tw = new StreamWriter("timesteps.txt");
Timer timer = new Timer(nT);
try
{
for (i = 0; i < nT; i++)
{
mutex.WaitOne();
// GameManager.instance.DebugLogSafe("t = " + i + "\n\tU[0]:" + U[0] + "\n\tU[" + (300) + "]:" + U[300]);
/////////////////////////////////
/// Time diffusion step
/////////////////////////////////
timer.StartTimer();
// Diffusion solver
rhsM.Multiply(U, U);
//U = lhsM.Solve(U); //This is the solver Ax = b waaaaaay too slow, doesn't crash but is super slow!
invlshM.Multiply(U, U);
/////////////////////////////////
/// End diffusion step timing
/// /////////////////////////////
timer.StopTimer(i.ToString());
// Save voltage from diffusion step for state probabilities
tempV.SetSubVector(0, NeuronCell.vertCount, U);
// Reaction
R.SetSubVector(0, NeuronCell.vertCount, reactF(U, N, M, H, NeuronCell.boundaryID));
R.Multiply(k / cap, R);
// This is the solution for the voltage after the reaction is included!
U.Add(R, U);
//Now update state variables using FE on M,N,H
N.Add(fN(tempV, N).Multiply(k), N);
M.Add(fM(tempV, M).Multiply(k), M);
H.Add(fH(tempV, H).Multiply(k), H);
//U.Add(U, updateBC(myCell.vertCount,myCell.boundaryID, i));
//U.SetSubVector(0, myCell.vertCount, setBC(U, i, k, myCell.boundaryID));
//Always reset to IC conditions and boundary conditions (for now)
U.SetSubVector(0, NeuronCell.vertCount, boundaryConditions(U, NeuronCell.boundaryID));
U[0] = 55; // 213 is soma index in not reordered grid for cell 12_a (0 is index in reorderd mesh with DFS)
//File.WriteAllLines(@"C:\Users\jaros_000\Desktop\myfile.txt", U.Select(d => d.ToString()));
for (int j = 0; j < NeuronCell.vertCount; j++)
{
sw.Write(U[j] + " ");
}
sw.Write("\n");
tw.Write((k * (double)i) + " ");
tw.Write("\n");
mutex.ReleaseMutex();
}
}
catch (Exception e)
{
GameManager.instance.DebugLogThreadSafe(e);
}
finally
{ // Export timer results regardless of if simulation is successful
timer.ExportCSV("CellSolver2FullAP_Implicit_DiffusionStep");
}
GameManager.instance.DebugLogSafe("Simulation Over.");
DateTime now = DateTime.Now;
}
#region Local Functions
private void InitializeNeuronCell()
{
Grid1D.Type = orderType;
//Initialize vector with all zeros
U = Vector.Build.Dense(NeuronCell.vertCount);
M = Vector.Build.Dense(NeuronCell.vertCount);
N = Vector.Build.Dense(NeuronCell.vertCount);
H = Vector.Build.Dense(NeuronCell.vertCount);
//Set all initial state probabilities
//M.Add(mi, M);
//N.Add(ni, N);
//H.Add(hi, H);
M[0] = mi;
N[0] = ni;
H[0] = hi;
//Set the initial conditions of the solution
U.SetSubVector(0, NeuronCell.vertCount, initialConditions(U, NeuronCell.boundaryID));
}
//Function for initialize voltage on cell
public static Vector initialConditions(Vector V, List<int> bcIndices)
{
//Vector ic = Vector.Build.Dense(V.Count);
//V.Add(-15, V);
V.SetSubVector(0, V.Count, boundaryConditions(V, bcIndices));
//V[0] = 55;
return V;
}
public static Vector boundaryConditions(Vector V, List<int> bcIndices)
{
for (int ind = 0; ind < bcIndices.Count; ind++)
{
V[bcIndices[ind]] = 0;
}
//V[0] = 55;
return V;
}
private static Vector reactF(Vector V, Vector NN, Vector MM, Vector HH, List<int> bcIndices)
{
Vector output = Vector.Build.Dense(V.Count);
Vector prod = Vector.Build.Dense(V.Count);
// Add current due to potassium
prod = NN.PointwisePower(4);
prod = (V - ek).PointwiseMultiply(prod);
output = gk * prod;
// Add current due to sodium
prod = MM.PointwisePower(3);
prod = HH.PointwiseMultiply(prod);
prod = (V - ena).PointwiseMultiply(prod);
output = output + gna * prod;
// Add leak current
output = output + gl * (V - el);
// Return the negative of the total
output.Multiply(-1, output);
output.SetSubVector(0, V.Count, boundaryConditions(output, bcIndices));
return output;
}
private static Vector fN(Vector V, Vector N)
{
Vector output = Vector.Build.Dense(V.Count);
output = an(V).PointwiseMultiply(1 - N) - bn(V).PointwiseMultiply(N);
return output;
}
private static Vector fM(Vector V, Vector M)
{
Vector output = Vector.Build.Dense(V.Count);
output = am(V).PointwiseMultiply(1 - M) - bm(V).PointwiseMultiply(M);
return output;
}
private static Vector fH(Vector V, Vector H)
{
Vector output = Vector.Build.Dense(V.Count);
output = ah(V).PointwiseMultiply(1 - H) - bh(V).PointwiseMultiply(H);
return output;
}
//The following functions are for the state variable ODEs on M,N,H
private static Vector an(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
Vector temp = 10 - V;
output = 0.01 * temp.PointwiseDivide((temp / 10).PointwiseExp() - 1);
return output;
}
private static Vector bn(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
output = 0.125 * (-1 * V / 80).PointwiseExp();
return output;
}
private static Vector am(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
Vector temp = 25 - V;
output = 0.1 * temp.PointwiseDivide((temp / 10).PointwiseExp() - 1);
return output;
}
private static Vector bm(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
output = 4 * (-1 * V / 18).PointwiseExp();
return output;
}
private static Vector ah(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
output = 0.07 * (-1 * V / 20).PointwiseExp();
return output;
}
private static Vector bh(Vector V)
{
Vector output = Vector.Build.Dense(V.Count);
Vector temp = 30 - V;
output = 1 / ((temp / 10).PointwiseExp() + 1);
return output;
}
#endregion
}
}