-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCellSolver2.cs
330 lines (264 loc) · 12.5 KB
/
CellSolver2.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Data;
using System.IO;
using System;
using UnityEngine;
// These are the MathNet Numerics Libraries needed
// They need to dragged and dropped into the Unity assets plugins folder!
using SparseMatrix = MathNet.Numerics.LinearAlgebra.Double.SparseMatrix;
using Matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using Vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using Double = MathNet.Numerics.LinearAlgebra.Double;
using MathNet.Numerics.Data.Text;
using solvers = MathNet.Numerics.LinearAlgebra.Double.Solvers;
using C2M2.NeuronalDynamics.UGX;
using Grid = C2M2.NeuronalDynamics.UGX.Grid;
namespace C2M2.NeuronalDynamics.Simulation
{
public class CellSolver2 : NDSimulation
{
//Set cell biological constants
public const double res = 10.0;
public const double gk = 36.0;
public const double gna = 120.0;
public const double gl = 0.3;
public const double ek = -12.0;
public const double ena = 220; //70;//112.0;
public const double el = 0.6;
public const double cap = 0.09;
public const double ni = 0.5, mi = 0.4, hi = 0.2; //state probabilities
public const double vstart = 55;
private Matrix U;
// Keep track of i locally so that we know which simulation frame to send to other scripts
private int i = -1;
public override float GetSimulationTime() => i * (float)k;
public override double[] Get1DValues()
{
return (U != null && i > -1) ? U.SubMatrix(0, U.RowCount, i, 1).ToColumnMajorArray() : null;
}
// Receive new simulation 1D index/value pairings
public override void Set1DValues(Tuple<int, double>[] newValues)
{
if (i > -1)
{
foreach (Tuple<int, double> newVal in newValues)
{
int j = newVal.Item1;
double val = newVal.Item2 * vstart;
U[j, i] += val;
}
}
}
double k;
protected override void Solve()
{
//Set solving parameters standard run set endTime = 2 and nT = 1000;
double endTime = 25; //25;//32; // End time value
int nT = 9000; //9000; //16000; // Number of Time steps
k = endTime / (double)nT; //Time step size
//double h = 0.008; //myCell.edgeLengths.Average()*1e4; //Spatial Step Size
double h = NeuronCell.edgeLengths.Average() * 1e4;
Debug.Log("h = " + h);
Debug.Log("Ave Edge Length = " + NeuronCell.edgeLengths.Average());
//This is where I begin using MathNumerics Library
//Make grid function as a matrix for now! and then I initialize the voltage at one
//location. Note: the row index will correspond to the vertex number! (hopefully)
U = Matrix.Build.Dense(NeuronCell.vertCount, nT);
//State variable grid functions
Matrix NN = Matrix.Build.Dense(NeuronCell.vertCount, nT);
Matrix MM = Matrix.Build.Dense(NeuronCell.vertCount, nT);
Matrix HH = Matrix.Build.Dense(NeuronCell.vertCount, nT);
U.SetSubMatrix(0, 0, SetBoundaryConditions(U.SubMatrix(0, NeuronCell.vertCount, 0, 1), NeuronCell.boundaryID));
//Initialize state variables
NN[0, 0] = ni;
MM[0, 0] = mi;
HH[0, 0] = hi;
alglib.sparsematrix rhsM;
alglib.sparsematrix lhsM;
alglib.sparsecreate(NeuronCell.vertCount, NeuronCell.vertCount, out rhsM);
alglib.sparsecreate(NeuronCell.vertCount, NeuronCell.vertCount, out lhsM);
//Internal variables for CN coefficients
double sig;
double rad;
int nghbr;
for (int p = 0; p < NeuronCell.vertCount; p++)
{
rad = NeuronCell.nodeData[p].nodeRadius;
//rad = 1e-3;
if (NeuronCell.nodeData[p].neighborIDs.Count == 1)
{
alglib.sparseset(rhsM, p, p, 1);
alglib.sparseset(lhsM, p, p, 1);
}
else
{
sig = (rad * k) / (4.0 * res * cap * h * h);
alglib.sparseset(rhsM, p, p, 1 - 2 * sig);
alglib.sparseset(lhsM, p, p, 1 + 2 * sig);
for (int j = 0; j < NeuronCell.nodeData[p].neighborIDs.Count; j++)
{
nghbr = NeuronCell.nodeData[p].neighborIDs[j];
alglib.sparseset(rhsM, p, nghbr, sig);
alglib.sparseset(lhsM, p, nghbr, -sig);
}
}
}
alglib.sparseconverttocrs(rhsM);
alglib.sparseconverttocrs(lhsM);
//This is the solving loop
//Using operator splitting
Matrix temp1 = Matrix.Build.Dense(NeuronCell.vertCount, 1);
Matrix temp2 = Matrix.Build.Dense(NeuronCell.vertCount, 1);
Matrix probTemp = Matrix.Build.Dense(NeuronCell.vertCount, 1);
Matrix react = Matrix.Build.Dense(NeuronCell.vertCount, 1);
double[] tempa = new double[NeuronCell.vertCount];
alglib.sparsesolverreport rep;
DateTime t0;
List<double> osTimes = new List<double>();
List<double> feTimes = new List<double>();
DateTime t1;
t0 = DateTime.Now;
Debug.Log("nT - 1:" + (nT - 1));
//UnityEngine.Profiling.Profiler.BeginSample("For Loop Start");
for (i = 0; i < nT - 1; i++)
{
t1 = DateTime.Now;
//Crank Nicolson: First multiply rhsM*b, then solve lhsM*x = rhsM*b
alglib.sparsemv(rhsM, GetColumn(U, i, NeuronCell.vertCount), ref tempa);
alglib.sparsesolve(lhsM, NeuronCell.vertCount, tempa, out tempa, out rep);
temp1.SetColumn(0, tempa);
//Reaction Calculation Step
//Use solution from diffusion solve (temp1) as input
react = ReactF(temp1, NN.SubMatrix(0, NeuronCell.vertCount, i, 1),
MM.SubMatrix(0, NeuronCell.vertCount, i, 1), HH.SubMatrix(0, NeuronCell.vertCount, i, 1));
//This is the solution from the reaction FE solve
temp2 = temp1 + k / cap * react; //FE step
//set B.C of cell
temp2.SetSubMatrix(0, 0, SetBoundaryConditions(temp2, NeuronCell.boundaryID));
U.SetSubMatrix(0, i + 1, temp2); //Set to next grid function step for Voltage
osTimes.Add((DateTime.Now - t1).TotalSeconds);
t1 = DateTime.Now;
//Do FE steps on state prob below using the intermediate solution temp1 from diffusion solve
probTemp = NN.SubMatrix(0, NeuronCell.vertCount, i, 1) +
k * (an(temp1).PointwiseMultiply(1 - NN.SubMatrix(0, NeuronCell.vertCount, i, 1)) -
bn(temp1).PointwiseMultiply(NN.SubMatrix(0, NeuronCell.vertCount, i, 1)));
NN.SetSubMatrix(0, i + 1, probTemp);
probTemp = MM.SubMatrix(0, NeuronCell.vertCount, i, 1) +
k * (am(temp1).PointwiseMultiply(1 - MM.SubMatrix(0, NeuronCell.vertCount, i, 1)) -
bm(temp1).PointwiseMultiply(MM.SubMatrix(0, NeuronCell.vertCount, i, 1)));
MM.SetSubMatrix(0, i + 1, probTemp);
probTemp = HH.SubMatrix(0, NeuronCell.vertCount, i, 1) +
k * (ah(temp1).PointwiseMultiply(1 - HH.SubMatrix(0, NeuronCell.vertCount, i, 1)) -
bh(temp1).PointwiseMultiply(HH.SubMatrix(0, NeuronCell.vertCount, i, 1)));
HH.SetSubMatrix(0, i + 1, probTemp);
feTimes.Add((DateTime.Now - t1).TotalSeconds);
//Debug.Log(U.SubMatrix(0,myCell.vertCount,i+1,1));
}
//UnityEngine.Profiling.Profiler.EndSample();
Debug.Log(DateTime.Now - t0);
Debug.Log("Average OS time = " + osTimes.Average());
Debug.Log("Max OS time = " + osTimes.Max());
Debug.Log("Total OS time = " + osTimes.Sum());
Debug.Log("Average FE time = " + feTimes.Average());
Debug.Log("Max FE time = " + feTimes.Max());
Debug.Log("Total FE time = " + feTimes.Sum());
//DelimitedWriter.Write("/Users/jamesrosado/Desktop/VR_Code_Files/cell2073.txt", U," ");
}
#region Local Functions
private static double[] GetColumn(Matrix V, int column, int nrows)
{
double[] x = new double[nrows];
for (int i = 0; i < nrows; i++)
{
x[i] = V[i, column];
}
return x;
}
private static Matrix SetBoundaryConditions(Matrix V, List<int> bcIndices)
{
Matrix output = Matrix.Build.Dense(V.RowCount, 1);
output.SetSubMatrix(0, 0, V);
for (int i = 0; i < bcIndices.Count; i++)
{
if (bcIndices[i] == 0)
{
output[bcIndices[i], 0] = CellSolver2.vstart;
}
else
{
output[bcIndices[i], 0] = 0;
}
}
return output;
}
private static Matrix ReactF(Matrix V, Matrix NN, Matrix MM, Matrix HH)
{
// The inputs are all column vectors, but I store them as column matrix
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
Matrix prod = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
// Add current due to potassium
prod = NN.PointwisePower(4);
prod = (V - CellSolver2.ek).PointwiseMultiply(prod);
output = CellSolver2.gk * prod;
// Add current due to sodium
prod = MM.PointwisePower(3);
prod = HH.PointwiseMultiply(prod);
prod = (V - CellSolver2.ena).PointwiseMultiply(prod);
output = output + CellSolver2.gna * prod;
// Add leak current
output = output + CellSolver2.gl * (V - CellSolver2.el);
// Return the negative of the total
return -1 * output;
}
private static Matrix an(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
Matrix temp = 10 - V;
output = 0.01 * temp.PointwiseDivide((temp / 10).PointwiseExp() - 1);
//output = 0.01 * temp.PointwiseDivide(PointwiseExpb(temp / 10, MOL_Matrix_v2.E) - 1);
return output;
}
private static Matrix bn(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
output = 0.125 * (-1 * V / 80).PointwiseExp();
return output;
}
private static Matrix am(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
Matrix temp = 25 - V;
output = 0.1 * temp.PointwiseDivide((temp / 10).PointwiseExp() - 1);
return output;
}
private static Matrix bm(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
output = 4 * (-1 * V / 18).PointwiseExp();
return output;
}
private static Matrix ah(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
output = 0.07 * (-1 * V / 20).PointwiseExp();
return output;
}
private static Matrix bh(Matrix V)
{
Matrix output = Matrix.Build.Dense(V.RowCount, V.ColumnCount);
Matrix temp = 30 - V;
output = 1 / ((temp / 10).PointwiseExp() + 1);
return output;
}
//Function for initialize voltage on cell
public static Matrix initialConditions(int size)
{
Matrix ic = Matrix.Build.Dense(size, 1);
ic[0, 0] = 55;
return ic;
}
#endregion
}
}