-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizePDE.m
123 lines (102 loc) · 3.12 KB
/
visualizePDE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
function visualizePDE()
%% this defines the spatial points for plotting purposes
% and is used in the pde solve
L = 1;
x = linspace(0,L,1000);
t = linspace(0,5.0,10000);
% time step size used for plot titles
k = t(2)-t(1);
m = 0;
%% this is were we solve for the entire solution
% you can replace the right hand sides with your solve
sol1 = pdepe(m,@heatpde,@heatic,@heatbc1,x,t);
sol2 = pdepe(m,@heatpde,@heatic,@heatbc2,x,t);
%% initializes the figure and size
figure(1)
set(gcf, 'Position', [100, 100, 2500, 1000]);
%% the first two subplots are the entire time series of the solution
subplot(3,2,1)
colormap jet
imagesc(x,t,sol1)
caxis([0 1])
colorbar
xlabel('Distance x','interpreter','latex')
ylabel('Time t','interpreter','latex')
title('Heat Equation for $0 \le x \le 1$ and $0 \le t \le 5$','interpreter','latex')
subplot(3,2,2)
colormap jet
imagesc(x,t,sol2)
caxis([0 1])
colorbar
xlabel('Distance x','interpreter','latex')
ylabel('Time t','interpreter','latex')
title('Heat Equation for $0 \le x \le 1$ and $0 \le t \le 5$','interpreter','latex')
%% opens a video file for writing to
movie_name = 'solution';
vidfile = VideoWriter(sprintf('%s.mp4',movie_name),'MPEG-4');
open(vidfile);
%% iterate through the solution every '80' time steps in this case
% you can change the 80 to a higher number so that the video is shorter
% or you can decrease the number which will make the video longer
for i =1:length(t)
if mod(i,80) == 0
% this plots a 2d plot of position vs solution u
s3=subplot(3,2,3);
plot(x,sol1(i,:))
xlabel('x')
ylabel('u')
ylim([0 1])
% this is a visualization of the movement of the solution u
% along the 1 dimensional rod
s5=subplot(3,2,5);
scatter(x,x.*0,60,sol1(i,:),'filled','o')
title(sprintf('t = %0.2f',i*k));
caxis([0 1])
colormap jet
axis off
% same as s3 subplot except for the second solution sol2
s4 = subplot(3,2,4);
plot(x,sol2(i,:))
xlabel('x')
ylabel('u')
ylim([0 1])
s6 = subplot(3,2,6);
scatter(x,x.*0,60,sol2(i,:),'filled','o')
title(sprintf('t = %0.2f',i*k));
caxis([0 1])
colormap jet
axis off
drawnow
% this captures the image frame to write to video files
thisFrame = getframe(gcf);
% write the image frame to the video file
writeVideo(vidfile, thisFrame);
% clear all axis
cla(s3); cla(s5); cla(s4); cla(s6);
end
end
% don't forget to close the video file!
close(vidfile);
end
%% these the pde functions you will need to replace these with your
% calcium dynamic equations
function [c,f,s] = heatpde(x,t,u,dudx)
c = 100;
f = dudx;
s = 0;
end
function u0 = heatic(x)
u0 = 0.5;
end
function [pl,ql,pr,qr] = heatbc1(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = ur - 1;
qr = 0;
end
function [pl,ql,pr,qr] = heatbc2(xl,ul,xr,ur,t)
pl = ul;
ql = 0.75;
pr = ur - 1;
qr = 0.0;
end