-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtuning.py
44 lines (30 loc) · 1.28 KB
/
tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
import numpy as np
from sklearn.model_selection import ParameterGrid
import robotics
PARAM_GRID = dict(
depth=[3, 4, 5],
kernel_size=[3, 4, 5, 6],
filters=[16, 32, 64, 96, 128, 256],
dropout_rate=np.arange(0.0, 0.751, 0.25),
normalize_inputs=[True, False]
)
def tune_model(data_path="", log_path="logs", output_path="model",
learning_rate=0.001, batch_size=256, epochs=20):
for i, hyperparams in enumerate(ParameterGrid(PARAM_GRID)):
print(i, hyperparams)
robotics.run_training(data_path, log_path, output_path,
learning_rate=learning_rate, batch_size=batch_size, epochs=epochs,
**hyperparams)
def _parse_cli_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', type=str, default="./")
parser.add_argument('--output-path', type=str, default="model")
parser.add_argument('--log-path', type=str, default="logs")
parser.add_argument('--learning_rate', type=int, default=0.001)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--epochs', type=int, default=20)
args = vars(parser.parse_args())
return args
if __name__ == '__main__':
tune_model(**_parse_cli_arguments())