-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
67 lines (55 loc) · 1.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from flask import Flask, render_template, request, jsonify
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
import joblib
df= pd.read_csv("SPAM.csv")
df_data = df[["Message","Category"]]
# Features and Labels
df_x = df_data['Message']
df_y = df_data.Category
# Extract Feature With CountVectorizer
corpus = df_x.values.astype('U')
cv = CountVectorizer()
X = cv.fit_transform(corpus) # Fit the Data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, df_y, test_size=0.33, random_state=42)
#Naive Bayes Classifier
clf = MultinomialNB()
clf.fit(X_train,y_train)
clf.score(X_test,y_test)
app = Flask(__name__)
#app.config['SERVER_NAME']="flaskapp:80"
@app.route('/')
def index():
return render_template('form.html')
@app.route('/predict', methods=['POST','GET'])
def predict():
if request.method == 'POST':
name = request.form['comment']
data = [name]
vect = cv.transform(data).toarray()
my_prediction = clf.predict(vect)
result = "Not a Spam"
if my_prediction == 'spam':
result="Spam"
return jsonify({'error':result})
return jsonify({'name':result})
elif request.method=='GET':
name = request.args.get('commentInput')
data = [name]
vect = cv.transform(data).toarray()
my_prediction = clf.predict(vect)
result = "Not a Spam"
if my_prediction == 'spam':
result="Spam"
return jsonify({"input":name,'outcome':result})
return jsonify({'input':name,'outcome':result})
# email = request.form['email']
# name = request.form['name']
# if name and email:
# newName = name[::-1]
# return jsonify({'name' : newName})
# return jsonify({'error' : 'Missing data!'})
if __name__ == '__main__':
app.run(host="192.168.29.254",port="80",debug=True)