-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_nerf.py
235 lines (205 loc) · 9.1 KB
/
eval_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import time
import imageio
import numpy as np
import torch
import torchvision
import yaml
from tqdm import tqdm
from nerf import (
CfgNode,
get_ray_bundle,
load_blender_data,
models,
get_embedding_function,
run_one_iter_of_nerf,
render_poses_llff,
load_llff_data
)
palette = [[180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]]
def cast_to_image(tensor, dataset_type):
# Input tensor is (H, W, 3). Convert to (3, H, W).
tensor = tensor.permute(2, 0, 1)
# Convert to PIL Image and then np.array (output shape: (H, W, 3))
img = np.array(torchvision.transforms.ToPILImage()(tensor.detach().cpu()))
return img
# # Map back to shape (3, H, W), as tensorboard needs channels first.
# return np.moveaxis(img, [-1], [0])
def cast_seg_map(seg,palette,img,opacity=0.5):
seg = seg.detach().cpu()
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
#print("seg shape",seg.shape,"color_seg shape", color_seg.shape)#,"palette is",palette)
for label, color in enumerate(palette):
#print("label",seg == label)
color_seg[seg == label, :] = color
# convert to BGR
# transpose not required, no need to convert to (3, H, W).
color_seg = color_seg[..., ::-1]#.transpose((-1,0,1))
img = img * (1 - opacity) + color_seg * opacity
img = img.astype(np.uint8)
img = np.array(torchvision.transforms.ToPILImage()(img))
return img
def cast_to_disparity_image(tensor):
img = (tensor - tensor.min()) / (tensor.max() - tensor.min())
img = img.clamp(0, 1) * 255
return img.detach().cpu().numpy().astype(np.uint8)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="Path to (.yml) config file."
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Checkpoint / pre-trained model to evaluate.",
)
parser.add_argument(
"--savedir", type=str, help="Save images to this directory, if specified."
)
parser.add_argument(
"--save-disparity-image", action="store_true", help="Save disparity images too."
)
configargs = parser.parse_args()
# Read config file.
cfg = None
with open(configargs.config, "r") as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
images, poses, render_poses, hwf = None, None, None, None
i_train, i_val, i_test = None, None, None
if cfg.dataset.type.lower() == "blender":
# Load blender dataset
images, poses, render_poses, hwf, i_split = load_blender_data(
cfg.dataset.basedir,
half_res=cfg.dataset.half_res,
testskip=cfg.dataset.testskip,
)
#i_train, i_val, i_test = i_split
H, W, focal = hwf
H, W = int(H), int(W)
elif cfg.dataset.type.lower() == "llff":
# Load LLFF dataset
_, poses, bds, render_poses, _, _ = load_llff_data(
cfg.dataset.basedir, factor=cfg.dataset.downsample_factor,
)
hwf = poses[0, :3, -1]
#Using simple render function to load render_poses
#render_poses,hwf,poses = render_poses_llff(cfg.dataset.basedir, factor=cfg.dataset.downsample_factor)
H, W, focal = hwf
hwf = [int(H), int(W), focal]
render_poses = torch.from_numpy(render_poses)
# Device on which to run.
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
encode_position_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
include_input=cfg.models.coarse.include_input_xyz,
log_sampling=cfg.models.coarse.log_sampling_xyz,
)
encode_direction_fn = None
if cfg.models.coarse.use_viewdirs:
encode_direction_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
include_input=cfg.models.coarse.include_input_dir,
log_sampling=cfg.models.coarse.log_sampling_dir,
)
# Initialize a coarse resolution model.
model_coarse = getattr(models, cfg.models.coarse.type)(
num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
include_input_xyz=cfg.models.coarse.include_input_xyz,
include_input_dir=cfg.models.coarse.include_input_dir,
use_viewdirs=cfg.models.coarse.use_viewdirs,
)
model_coarse.to(device)
# If a fine-resolution model is specified, initialize it.
model_fine = None
if hasattr(cfg.models, "fine"):
model_fine = getattr(models, cfg.models.fine.type)(
num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
include_input_xyz=cfg.models.fine.include_input_xyz,
include_input_dir=cfg.models.fine.include_input_dir,
use_viewdirs=cfg.models.fine.use_viewdirs,
)
model_fine.to(device)
checkpoint = torch.load(configargs.checkpoint)
model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
if checkpoint["model_fine_state_dict"]:
try:
model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
except:
print(
"The checkpoint has a fine-level model, but it could "
"not be loaded (possibly due to a mismatched config file."
)
if "height" in checkpoint.keys():
hwf[0] = checkpoint["height"]
if "width" in checkpoint.keys():
hwf[1] = checkpoint["width"]
if "focal_length" in checkpoint.keys():
hwf[2] = checkpoint["focal_length"]
model_coarse.eval()
if model_fine:
model_fine.eval()
render_poses = render_poses.float().to(device)
# Create directory to save images to.
os.makedirs(configargs.savedir, exist_ok=True)
if configargs.save_disparity_image:
os.makedirs(os.path.join(configargs.savedir, "disparity"), exist_ok=True)
# creating color palette
state = np.random.get_state()
np.random.seed(42)
# random palette with hard coded num classes 19
palette19 = np.random.randint(0, 255, size=(19, 3))
np.random.set_state(state)
# Evaluation loop
times_per_image = []
for i, pose in enumerate(tqdm(render_poses)):
start = time.time()
rgb = None, None
disp = None, None
with torch.no_grad():
pose = pose[:3, :4]
ray_origins, ray_directions = get_ray_bundle(hwf[0], hwf[1], hwf[2], pose)
rgb_coarse, disp_coarse, _,seg_coarse, rgb_fine, disp_fine, _,seg_fine = run_one_iter_of_nerf(
hwf[0],
hwf[1],
hwf[2],
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
rgb = rgb_fine if rgb_fine is not None else rgb_coarse
seg = seg_fine if seg_fine is not None else seg_coarse
print("rgb shape",rgb.shape,"seg shape",seg.shape)
if configargs.save_disparity_image:
disp = disp_fine if disp_fine is not None else disp_coarse
times_per_image.append(time.time() - start)
if configargs.savedir:
savefile = os.path.join(configargs.savedir, f"{i:04d}.png")
img = cast_to_image(rgb[..., :3], cfg.dataset.type.lower())
imageio.imwrite(
savefile, img
)
# saving the segmentation maps rendered on og images
assert rgb.shape[:-1] == seg.shape[:-1]
seg = seg.argmax(dim=-1)
savefile = os.path.join(configargs.savedir, f"{i:04d}_seg.png")
imageio.imwrite(
savefile, cast_seg_map(seg[..., :],palette19,img)
)
if configargs.save_disparity_image:
savefile = os.path.join(configargs.savedir, "disparity", f"{i:04d}.png")
imageio.imwrite(savefile, cast_to_disparity_image(disp))
tqdm.write(f"Avg time per image: {sum(times_per_image) / (i + 1)}")
if __name__ == "__main__":
main()