-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
694 lines (530 loc) · 23.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: jacobstachowicz
"""
import numpy as np
import numpy.matlib as npm
import pickle as p
import random
import os
import matplotlib.pyplot as plt
import math
directory = r"C:\[insert path]\code\cifar-10-batches-py" # for windows
#directory = "/[insert path]/code/cifar-10-batches-py" # for mac/linux
def paramChange(params, new, i):
stuff = [np.copy(i) for i in params]
stuff[i] = new
return stuff
def computeNumGrads(X, Y, params, gamma, beta, lmbda, val, batchNorm):
grads = [np.copy(i) for i in params]
gGrads = [np.copy(i) for i in gamma]
bGrads = [np.copy(i) for i in beta]
c = cost(X, Y, params, gamma, beta, lmbda, batchNorm)
for i in range(int(len(params)/2)):
W = params[i]
for k in range(np.size(W, 0)):
for j in range(W.shape[1]):
Wi = np.array(W)
Wi[k,j] += val
cj = cost(X, Y, paramChange(params, Wi, i), gamma, beta, lmbda,batchNorm)
grads[i][k,j] = (cj - c) / val
for i in range(int(len(grads)/2),len(params)):
b = params[i]
for k in range(np.size(b)):
bi = np.array(b)
bi[k] += val
ck = cost(X, Y, paramChange(params, bi, i), gamma, beta, lmbda, batchNorm)
grads[i][k] = (ck - c) / val
if(batchNorm):
for i in range(len(gamma)):
W = gamma[i]
for k in range(np.size(W, 0)):
for j in range(W.shape[1]):
Wi = np.array(W)
Wi[k,j] += val
cj = cost(X, Y, params, paramChange(gamma, Wi, i), beta, lmbda, batchNorm)
gGrads[i][k,j] = (cj - c) / val
for i in range(len(bGrads)):
b = bGrads[i]
for k in range(np.size(b)):
bi = np.array(b)
bi[k] += val
ck = cost(X, Y, params, gamma, paramChange(beta, bi, i), lmbda,batchNorm)
bGrads[i][k] = (ck - c) / val
return grads, gGrads, bGrads
def plotLoss(cost_train, cost_valid, yLabel):
eta_min, eta_max, n_s, t_end, cycles = etas
plt.figure(dpi=120)
plt.plot(cost_train, "-g", label="training "+ str(yLabel))
plt.plot(cost_valid, "-r", label="validation" + str(yLabel))
plt.ylabel(yLabel)
plt.xlabel('update step')
plt.legend(loc="lower right")
plt.xlim(xmin=0)
plt.ylim(ymin=0)
plt.grid(True)
max_x = int(math.ceil(t_end / 1000.0)) * 1000
perCycle = 10
cycle_len = n_s*2
step = int((cycle_len)/perCycle)
array_len = len(cost_valid)
my_ticks = np.arange(0, max_x, step)
frequency = 10
plt.xticks(np.arange(0, array_len+1, frequency), my_ticks[::frequency])
plt.show()
def unpickle(file):
with open(file, 'rb') as fo:
dict = p.load(fo, encoding='bytes')
return dict
def fetch_batches(type_of_batch):
arr = []
path = os.fsencode(directory)
for file in os.listdir(path):
filename = os.fsdecode(file)
if filename.startswith(type_of_batch):
arr.append(unpickle("cifar-10-batches-py/" + filename))
return arr
def largestBatch():
data = fetch_batches("data_batch")
X, Y, y = loadBatch(data[0])
validSize = 10
for i in range(1, len(data)):
newX, newY, newy = loadBatch(data[i])
X = np.concatenate((X, newX), axis=0)
Y = np.concatenate((Y, newY), axis=0)
y = np.concatenate((y, newy), axis=0)
Xtrain = np.delete(X, np.s_[len(X)-validSize:len(X)], axis=0)
Ytrain = np.delete(Y, np.s_[len(Y)-validSize:len(Y)], axis=0)
ytrain = y[0:len(y)-validSize]
Xvalid = np.delete(X, np.s_[0:len(X)-validSize], axis=0)
Yvalid = np.delete(Y, np.s_[0:len(Y)-validSize], axis=0)
yvalid = y[len(y)-validSize:len(y)]
return Xtrain, Ytrain, ytrain, Xvalid , Yvalid , yvalid
def emptyLists(amount):
arr = []
for i in range(amount):
arr.append([])
return arr
def fixedLists(amount, size):
arr = []
for i in range(amount):
arr.append([None] * size)
return arr
def hot_ones(labels):
hot_list = np.zeros( (len(labels), 10))
for i in range(len(labels)):
hot_list[i][labels[i]] = 1
return hot_list
def loadBatch(batch):
X = np.asarray(batch[b'data'])
y = np.asarray(batch[b'labels'])
Y = hot_ones(y)
return X, Y, y
def multiT(X,Y,Xv,Yv):
return X.T, Y.T, Xv.T, Yv.T
def createMiniBatch(X, Y, y, size):
newX = np.zeros([len(X[:,0]), size])
newY = np.zeros( (len(Y), size))
newy = np.zeros([size])
a = np.arange(len(y))
random.shuffle(a)
for i in range(size):
newX[:,i] = X[:,a[i]]
newY[:,i] = Y[:,a[i]]
newy[i] = y[a[i]]
return newX, newY, newy
def createMiniBatches(X, Y, y, n_batches):
size = int(np.size(X, 1)/n_batches)
batch_array = [None] * n_batches
a = np.arange(np.size(X, 1))
random.shuffle(a)
for ii in range(int(n_batches)):
step = ii * size
newY = np.zeros((np.size(Y, 0), size))
newX = np.zeros([np.size(X, 0), size])
newy = np.zeros([size])
for i in range(size):
newX[:,i] = X[:,a[i+step]]
newY[:,i] = Y[:,a[i+step]]
newy[i] = y[a[i+step]]
b_dict = {
"X": newX,
"Y": newY,
"y": newy
}
batch_array[ii] = b_dict
return batch_array
def unpackMiniBatch(b, i):
return b[i]["X"], b[i]["Y"], b[i]["y"]
def preprocess(X):
X = X - npm.repmat(np.mean(X, axis = 0), len(X), 1)
return np.divide(X, npm.repmat(np.std(X, axis = 0), len(X), 1))
def createParams(info):
Ws = []
bs = []
for i in range(len(info)-1):
Ws.append(np.random.randn(info[i+1], info[i]) * np.sqrt(2/info[i] ) )
bs.append(np.zeros((info[i+1], 1)))
return Ws + bs
def createParamsSensitive(info, sig):
Ws = []
bs = []
for i in range(len(info)-1):
Ws.append(np.random.normal(0, sig, (info[i+1], info[i]) ) )
bs.append(np.zeros((info[i+1], 1)))
return Ws + bs
def createYB(info):
Y = []
B = []
for i in range(len(info)-1):
Y.append(np.ones([info[i+1], 1]))
B.append(np.zeros([info[i+1], 1]))
return Y, B
def leakyReLu(s):
return np.maximum(s*0.1, 0)
def reLu(s):
return np.maximum(s, 0)
def softMax(s):
return np.exp(s) / np.sum(np.exp(s), axis = 0)
def batchNormalise(S, mu, v):
eps = 1e-9
return ( S - mu ) / np.sqrt(eps + v)
def forward(*args):
mu, v, x, s, s_hat = emptyLists(5)
X, params, gamma, beta, batchNorm = args[:5]
testing = len(args) == 7
if(testing):
mu, v = args[-2:]
k = int(len(params) / 2)
x.append(np.copy(X))
for i in range(k - 1):
s.append(np.matmul(params[i], x[i]) + params[k + i]) #5
if(batchNorm):
if(not testing):
mu.append(r(np.mean(s[i], axis = 1)))
v.append( r(np.var(s[i], axis = 1)))
s_hat.append(batchNormalise(s[i], mu[i], v[i])) #6
s_tmp = np.multiply(gamma[i], s_hat[i]) + beta[i] #7
x.append(reLu(s_tmp)) #8
else:
x.append(reLu(s[i]))
s_last = np.matmul(params[k-1], x[k-1]) + params[2*k -1]
p = softMax(s_last)
return p, x, s, s_hat, mu, v
def crossEntropyLoss(P, Y):
lcrosssum = 0;
for i in range(np.size(Y,1)):
lcrosssum -= np.log(np.dot(Y[:,i], P[:,i]))
return lcrosssum
def regularization(params, lmbda):
return lmbda * np.sum([np.sum(params[i] * params[i]) for i in range(int(len(params)/2))])
def cost(X, Y, weightsAndBias, gamma, beta, lmbda, batchNorm):
f = forward(X, weightsAndBias, gamma, beta, batchNorm)
lcrosssum = crossEntropyLoss(f[0], Y)
reg = regularization(weightsAndBias, lmbda)
return (1/np.size(X, 1)) * lcrosssum + reg
def ComputeAcc(X, y, params, gamma, beta, mu, v, batchNorm):
P = forward(X, params, gamma, beta, batchNorm, mu, v)[0]
corr = 0
tot = len(y)
for i in range(tot):
corr += 1 if y[i] == np.argmax(P[:,i]) else 0
return round(100*(corr/tot),2)
def ComputeEnsambleAcc(X, y, nets, batchNorm):
params, gamma, beta, mu, v = nets[0]
P = forward(X, params, gamma, beta, batchNorm, mu, v)[0]
for n in range(len(nets)-1):
params, gamma, beta, mu, v = nets[n+1]
Pt = forward(X, params, gamma, beta, batchNorm, mu, v)[0]
P += Pt
corr = 0
tot = len(y)
for i in range(tot):
corr += 1 if y[i] == np.argmax(P[:,i]) else 0
return round(100*(corr/tot),2)
def printAcc(Xo, yo, Xv, yv,params, gamma, beta, mu, v,batchNorm ):
print("post train acc: "+str(ComputeAcc(Xo, yo, params, gamma, beta, mu, v,batchNorm)) + " %")
print("post valid acc: "+str(ComputeAcc(Xv, yv, params, gamma, beta, mu, v,batchNorm)) + " %")
def r(n):
return np.reshape(n, (len(n), 1))
def toParams(W1, W2, b1, b2):
return W1, W2, b1, b2
def cLearnRates(etas, t):
eta_min, eta_max, n_s, i, cycles = etas
l = int(t / (n_s*2))
if(t % (2*n_s) < n_s):
return eta_min + ( (t-(2*l * n_s)) /n_s) * (eta_max - eta_min)
else:
return eta_max - ( (t-((2*l+1) * n_s)) /n_s) * (eta_max - eta_min)
def batch_norm_back_pass(G, S, mu, v, div):
eps = 1e-5
sigma_1 = np.power((v+eps), -0.5) # (1/(np.sqrt(v+eps))) #31
sigma_2 = np.power((v+eps), -1.5) #(1/((v * np.sqrt(v))+eps)) #32
G1 = np.multiply(G, sigma_1) #33
G2 = np.multiply(G, sigma_2) #34
D = S - mu #35
c = r(np.sum(np.multiply(G2, D), axis = 1)) #36
part1 = div * r( np.sum(G1, axis=1))
part2 = div * np.multiply(D, r(np.sum(c, axis = 1)))
return G1 - part1 - part2
def backwards(X, Y, params, g, b, lmbda, batchNorm):
k = int(len(params) / 2)
div = (1/np.size(Y,1))
P, h, s, s_hat, mu, v = forward(X, params, g, b, batchNorm)
grads = [np.copy(i) for i in params]
gGrads = np.copy(g)
bGrads = np.copy(b)
G = P - Y #21
grads[k-1] = div * np.matmul(G, np.transpose(h[k-1])) + 2 * lmbda * params[k-1] #22 ekv 1
grads[2*k-1] = r(div * np.sum(G, axis=1)) #22 ekv 2
G = np.matmul(np.transpose(params[k-1]), G) #23
G = np.multiply(G, (h[k-1] > 0)) #24
for i in range(k-2, -1, -1):
if(batchNorm):
gGrads[i] = r(div * np.sum(np.multiply(G, s_hat[i]), axis = 1)) #25 ekv 1
bGrads[i] = r(div * np.sum(G, axis=1)) #25 ekv 2
G = np.multiply(G, r(np.sum(g[i], axis=1))) #26
G = batch_norm_back_pass(G, s[i], mu[i], v[i], div ) #27
grads[i] = div * np.matmul(G, np.transpose(h[i])) + 2 * lmbda * params[i]
grads[i+k] = r(div * np.sum(G, axis=1))
if(i > 0):
G = np.matmul(np.transpose(params[i]), G)
G = np.multiply(G, (h[i] > 0))
return grads, gGrads, bGrads, mu, v
def miniBatchGD(G, n_batches, etas, params, gamma, beta, l, batchNorm, printStuff = False):
Xo, Yo, yo, Xv, Yv, yv = G
Xt, Yt, yt = test
eta_min, eta_max, n_s, t_end, cycles = etas
stepPrint = int(2*n_s)/10
max_x = (int(math.ceil(t_end / 1000.0)) * 1000)
size = int(max_x/stepPrint)+1
cost_t, cost_v, loss_t, loss_v, acc_t, acc_v, t_rate = fixedLists(7, size)
batches = createMiniBatches(Xo, Yo, yo, n_batches)
ii = 0
mu_avg = 0.0
v_avg = 0.0
alpha = 0.9
for t in range(t_end):
eta = cLearnRates(etas, t)
if(t % n_batches == 0):
batches = createMiniBatches(Xo, Yo, yo, n_batches)
i = t % n_batches
Xb, Yb, yb = unpackMiniBatch(batches, i)
grads, gGrads, bGrads, mu, v = backwards(Xb, Yb, params, gamma, beta, l, batchNorm)
for i in range(len(params)):
params[i] = params[i] - eta * grads[i]
if(batchNorm):
for i in range(len(gamma)):
gamma[i] = gamma[i] - eta * gGrads[i]
beta[i] = beta[i] - eta * bGrads[i]
if(t ==0):
mu_avg = mu
v_avg = v
for i in range(len(mu_avg)):
mu_avg[i] = mu_avg[i]*alpha + (1.0-alpha)*mu[i]
v_avg[i] = v_avg[i]*alpha + (1.0-alpha)*v[i]
if(t% stepPrint==0 or t == t_end-1):
if((t% (stepPrint*4)==0) and printStuff):
print(str(100 * (t/t_end)) + " Procent done")
cost_t[ii] = cost(Xo, Yo, params, gamma, beta, l, batchNorm)
cost_v[ii] = cost(Xv, Yv, params,gamma, beta, l, batchNorm)
loss_t[ii] = cost(Xo, Yo, params, gamma, beta,0, batchNorm)
loss_v[ii] = cost(Xv, Yv, params,gamma, beta, 0, batchNorm)
acc_t[ii] = ComputeAcc(Xo, yo, params, gamma, beta, mu_avg, v_avg, batchNorm)
acc_v[ii] = ComputeAcc(Xv, yv, params, gamma, beta, mu_avg, v_avg, batchNorm)
if(printStuff):
printAcc(Xo, yo, Xv, yv,params, gamma, beta, mu_avg, v_avg ,batchNorm )
print("TestACC: " + str(ComputeAcc(Xt, yt, params, gamma, beta, mu_avg, v_avg, batchNorm)))
t_rate[ii] = eta
ii += 1
final_v_acc = ComputeAcc(Xv, yv, params, gamma, beta, mu_avg, v_avg,batchNorm)
if(printStuff):
plotLoss(cost_t, cost_v, "Cost")
plotLoss(loss_t, loss_v, "Loss")
plotLoss(acc_t, acc_v, "Accuracy")
plotLoss(t_rate, t_rate, "ting rate")
printAcc(Xo, yo, Xv, yv,params, gamma, beta, mu_avg, v_avg, batchNorm )
Xt, Yt, yt = test
print("test acc: " + str(ComputeAcc(Xt, yt, params, gamma, beta, mu_avg, v_avg,batchNorm)))
return params, gamma, beta,mu_avg, v_avg, final_v_acc
def logLambda():
e_min = -4
e_max = -1.5
l = e_min + (e_max - e_min) * random.random()
return np.power(10, l);
def logLambdaOrdered(i):
e_min = -2.5
e_max = -2.15 #-1.5
l = e_min + (e_max - e_min) * i
return np.power(10, l);
def bestParams(G, n_batches, etas, weightsAndBias, gamma, beta, l, test, batchNorm, times):
eta_min, eta_max, n_s, t_end, cycles = etas
testX, testY, testy = test
final_valid_acc = 0
second_valid_acc = 0
final_lmbda = lmbda
s_final_lmbda = final_lmbda
final_params = [np.copy(i) for i in weightsAndBias]
final_gamma = np.copy(gamma)
final_beta = np.copy(beta)
final_mu = None
final_v = None
s_final_params = [np.copy(i) for i in weightsAndBias]
s_final_gamma = np.copy(gamma)
s_final_beta = np.copy(beta)
s_final_mu = None
s_final_v = None
for i in range(times):
new_lmbda = logLambda()
print(i/times)
print("search nr: " + str(i+1) + " with lambda: " + str(new_lmbda))
p = [np.copy(i) for i in weightsAndBias]
g = np.copy(gamma)
b = np.copy(beta)
new_params, new_gamma, new_beta,mu,v, v_acc = miniBatchGD(G, n_batches, etas, p ,g, b,new_lmbda, batchNorm)
print("post vali acc: " + str(v_acc))
print("post test acc: " + str(ComputeAcc(testX, testy, new_params, new_gamma, new_beta, mu, v, batchNorm)))
if(v_acc > final_valid_acc):
s_final_lmbda = final_lmbda
s_final_params = final_params
s_final_gamma = final_gamma
s_final_beta = final_beta
s_final_mu = final_mu
s_final_v = v
second_valid_acc = final_valid_acc
final_lmbda = new_lmbda
final_params = new_params
final_gamma = new_gamma
final_beta = new_beta
final_mu = mu
final_v = v
final_valid_acc = v_acc
ComputeAcc(testX, testy, new_params, new_gamma, new_beta, mu, v, batchNorm)
test_acc =ComputeAcc(testX, testy, final_params, final_gamma,final_beta, final_mu, final_v, batchNorm)
s_test_acc =ComputeAcc(testX, testy, s_final_params, s_final_gamma,s_final_beta, s_final_mu, s_final_v, batchNorm)
print("##################")
print("best lambda : " + str(final_lmbda))
print("best valid acc: " + str(final_valid_acc))
print("gave test acc: " + str(test_acc))
print("------------------")
print("2nd best lambda : " + str(s_final_lmbda))
print("gave valid acc: " + str(second_valid_acc))
print("gave test acc: " + str(s_test_acc))
def gradNorm(aGrad,nGrad,name):
print("Norm_" + name + ": " + str(np.linalg.norm(aGrad - nGrad) ))
def relativeError(aGrad,nGrad, name):
eps = 1e-05
upper = np.linalg.norm(aGrad - nGrad)
lower = max(eps, np.linalg.norm(aGrad) + np.linalg.norm(nGrad))
print("relative error for " + name + ": " + str(upper/lower))
def testGradients(X, Y, y, batchsize, weightsAndBias, gamma, beta,lmbda,batchNorm):
miniX, miniY, miniy = createMiniBatch(X, Y, y, batchsize)
aGrads, gGrads, bGrads, mu, v = backwards(miniX, miniY, weightsAndBias,gamma,beta, lmbda, batchNorm)
nGrads, ngGrads, nbGrads = computeNumGrads(miniX, miniY, weightsAndBias, gamma, beta, lmbda, 1e-5,batchNorm)
netLen = len(weightsAndBias)
lenG = len(gGrads)
for i in range(netLen):
name = "W"+str(i+1)
if i >= int(netLen/2):
name = "b"+str(i+1 - int(netLen/2))
relativeError(aGrads[i],nGrads[i],name)
if(batchNorm):
for i in range(lenG):
relativeError(gGrads[i],ngGrads[i],"Gamma")
relativeError(bGrads[i],nbGrads[i],"Beta")
################################ Exercise 3 Bonus ################################
for i in range(1):
testX, testY, testy = loadBatch(unpickle(directory + "/test_batch"))
trainX, trainY, trainy, validX, validY, vaildy= largestBatch() # training set of size 49000 and test set of size 1000
trainX = preprocess(trainX)
validX = preprocess(validX)
testX = preprocess(testX)
""" Used for reducing dimensionality (use only when testing gradients)"""
# trainX = np.delete(trainX, np.s_[10:len(trainX)], axis=1)
trainX, trainY, validX, validY = multiT(trainX, trainY, validX, validY)
test = testX.T, testY.T, testy
Xt, Yt, yt = test
val = 1e-5
k = np.size(trainY, 0)
d = np.size(trainX, 0)
n = np.size(trainX, 1)
m = 10
n_batches = 450
n_b_size = 100
lmbda = 0.0044668359215096305
l_mod = 0.0002
cycles = 4
eta_min = 1e-5
eta_max = 1e-1
n_s = int(5 * int(n / n_b_size))
t = cycles*2*n_s
etas = eta_min, eta_max, n_s, t, cycles
networkDim = [d, 50, 30, 20, 20, 10, 10, 10, 10, k]
""" Use only when testing sensitivity to initialisation"""
# weightsAndBias = createParamsSensitive(networkDim, 1e-1)
weightsAndBias = createParams(networkDim)
Gamma, Beta = createYB(networkDim)
GG = trainX, trainY, trainy, validX, validY, vaildy
batchNorm = True
printStuff = True
""" For testing gradients, dont forget to reduce dimensionality on row 591"""
# testGradients(trainX, trainY, trainy, 1000, weightsAndBias, Gamma, Beta, lmbda, batchNorm)
""" Mini batchGD"""
# params, gamma, beta, mu, v, finalAcc = miniBatchGD(GG, n_batches, etas, weightsAndBias, Gamma, Beta, lmbda, batchNorm, printStuff)
""" For finding best lambda: """
# bestParams(GG, n_batches, etas, weightsAndBias, Gamma, Beta, lmbda, test, batchNorm, 20) # for finding best lambda
ensamble = True
if(ensamble):
netA = [d, 2000, 1000, 2000, k]
netB = [d, 2000, 1000, 2000, k]
netC = [d, 500, 1000, 1000, 500, k]
netD = [d, 1000, 4000, 1000, k]
netE = [d, 3000, 3000, k]
weightsAndBiasA = createParams(netA)
weightsAndBiasB = createParams(netB)
weightsAndBiasC = createParams(netC)
weightsAndBiasD = createParams(netD)
weightsAndBiasE = createParams(netE)
AGamma, ABeta = createYB(netA)
BGamma, BBeta = createYB(netB)
CGamma, CBeta = createYB(netC)
DGamma, DBeta = createYB(netD)
EGamma, EBeta = createYB(netE)
paramsC, gammaC, betaC, muC, vC, finalAccC = miniBatchGD(GG, n_batches, etas, weightsAndBiasC, CGamma, CBeta, lmbda, batchNorm, printStuff)
paramsA, gammaA, betaA, muA, vA, finalAccA = miniBatchGD(GG, n_batches, etas, weightsAndBiasA, AGamma, ABeta, lmbda, batchNorm, printStuff)
paramsB, gammaB, betaB, muB, vB, finalAccB = miniBatchGD(GG, n_batches, etas, weightsAndBiasB, BGamma, BBeta, 0.03, batchNorm, printStuff)
paramsD, gammaD, betaD, muD, vD, finalAccD = miniBatchGD(GG, n_batches, etas, weightsAndBiasD, DGamma, DBeta, lmbda+0.0002, batchNorm, printStuff)
paramsE, gammaE, betaE, muE, vE, finalAccE = miniBatchGD(GG, n_batches, etas, weightsAndBiasE, EGamma, EBeta, lmbda-0.0002, batchNorm, printStuff)
print("######## i is: "+ str(i) +" ##########")
print("individual test accuracy: ")
print( str( ComputeAcc(Xt, yt, paramsA, gammaA, betaA, muA, vA, batchNorm)))
print( str( ComputeAcc(Xt, yt, paramsB, gammaB, betaB, muB, vB, batchNorm)))
print( str( ComputeAcc(Xt, yt, paramsC, gammaC, betaC, muC, vC, batchNorm)))
print( str( ComputeAcc(Xt, yt, paramsD, gammaD, betaD, muD, vD, batchNorm)))
print( str( ComputeAcc(Xt, yt, paramsE, gammaE, betaE, muE, vE, batchNorm)))
print("---------------------------")
netsA = paramsA, gammaA, betaA, muA, vA
netsB = paramsB, gammaB, betaB, muB, vB
netsC = paramsC, gammaC, betaC, muC, vC
netsD = paramsD, gammaD, betaD, muD, vD
netsE = paramsE, gammaE, betaE, muE, vE
wholeTeam = netsA, netsB, netsC, netsD, netsE
outer = netsA, netsE
middleAndOuter = netsA, netsC, netsE
vampire = netsB, netsD
middleThree = netsB, netsC, netsD
allButMiddle = netsA, netsB, netsD, netsE
acc_wholeTeam = ComputeEnsambleAcc(Xt, yt, wholeTeam, batchNorm)
acc_outer = ComputeEnsambleAcc(Xt, yt, outer, batchNorm)
acc_middleAndOuter = ComputeEnsambleAcc(Xt, yt, middleAndOuter, batchNorm)
acc_vampire = ComputeEnsambleAcc(Xt, yt, vampire, batchNorm)
acc_middleThree = ComputeEnsambleAcc(Xt, yt, middleThree, batchNorm)
acc_allButMiddle = ComputeEnsambleAcc(Xt, yt, allButMiddle, batchNorm)
print("wholeTeam aensemble accuracy: " + str(acc_wholeTeam))
print("outer ensemble accuracy: " + str(acc_outer))
print("middleAndOuter ensemble accuracy: " + str(acc_middleAndOuter))
print("vampire ensemble accuracy: " + str(acc_vampire))
print("middleThree ensemble accuracy: " + str(acc_middleThree))
print("allButMiddle ensemble accuracy: " + str(acc_allButMiddle))
print("##################################")