forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mask_gan.py
1167 lines (980 loc) · 44.9 KB
/
train_mask_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Launch example:
[IMDB]
python train_mask_gan.py --data_dir
/tmp/imdb --data_set imdb --batch_size 128
--sequence_length 20 --base_directory /tmp/maskGAN_v0.01
--hparams="gen_rnn_size=650,gen_num_layers=2,dis_rnn_size=650,dis_num_layers=2
,critic_learning_rate=0.0009756,dis_learning_rate=0.0000585,
dis_train_iterations=8,gen_learning_rate=0.0016624,
gen_full_learning_rate_steps=1e9,gen_learning_rate_decay=0.999999,
rl_discount_rate=0.8835659" --mode TRAIN --max_steps 1000000
--generator_model seq2seq_vd --discriminator_model seq2seq_vd
--is_present_rate 0.5 --summaries_every 25 --print_every 25
--max_num_to_print=3 --generator_optimizer=adam
--seq2seq_share_embedding=True --baseline_method=critic
--attention_option=luong --n_gram_eval=4 --mask_strategy=contiguous
--gen_training_strategy=reinforce --dis_pretrain_steps=100
--perplexity_threshold=1000000
--dis_share_embedding=True --maskgan_ckpt
/tmp/model.ckpt-171091
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from functools import partial
import os
import time
# Dependency imports
import numpy as np
from six.moves import xrange
import tensorflow as tf
import pretrain_mask_gan
from data import imdb_loader
from data import ptb_loader
from model_utils import helper
from model_utils import model_construction
from model_utils import model_losses
from model_utils import model_optimization
# Data.
from model_utils import model_utils
from model_utils import n_gram
from models import evaluation_utils
from models import rollout
np.set_printoptions(precision=3)
np.set_printoptions(suppress=True)
MODE_TRAIN = 'TRAIN'
MODE_TRAIN_EVAL = 'TRAIN_EVAL'
MODE_VALIDATION = 'VALIDATION'
MODE_TEST = 'TEST'
## Binary and setup FLAGS.
tf.app.flags.DEFINE_enum(
'mode', 'TRAIN', [MODE_TRAIN, MODE_VALIDATION, MODE_TEST, MODE_TRAIN_EVAL],
'What this binary will do.')
tf.app.flags.DEFINE_string('master', '',
"""Name of the TensorFlow master to use.""")
tf.app.flags.DEFINE_string('eval_master', '',
"""Name prefix of the Tensorflow eval master.""")
tf.app.flags.DEFINE_integer('task', 0,
"""Task id of the replica running the training.""")
tf.app.flags.DEFINE_integer('ps_tasks', 0, """Number of tasks in the ps job.
If 0 no ps job is used.""")
## General FLAGS.
tf.app.flags.DEFINE_string(
'hparams', '', 'Comma separated list of name=value hyperparameter pairs.')
tf.app.flags.DEFINE_integer('batch_size', 20, 'The batch size.')
tf.app.flags.DEFINE_integer('vocab_size', 10000, 'The vocabulary size.')
tf.app.flags.DEFINE_integer('sequence_length', 20, 'The sequence length.')
tf.app.flags.DEFINE_integer('max_steps', 1000000,
'Maximum number of steps to run.')
tf.app.flags.DEFINE_string(
'mask_strategy', 'random', 'Strategy for masking the words. Determine the '
'characterisitics of how the words are dropped out. One of '
"['contiguous', 'random'].")
tf.app.flags.DEFINE_float('is_present_rate', 0.5,
'Percent of tokens present in the forward sequence.')
tf.app.flags.DEFINE_float('is_present_rate_decay', None, 'Decay rate for the '
'percent of words that are real (are present).')
tf.app.flags.DEFINE_string(
'generator_model', 'seq2seq',
"Type of Generator model. One of ['rnn', 'seq2seq', 'seq2seq_zaremba',"
"'rnn_zaremba', 'rnn_nas', 'seq2seq_nas']")
tf.app.flags.DEFINE_string(
'attention_option', None,
"Attention mechanism. One of [None, 'luong', 'bahdanau']")
tf.app.flags.DEFINE_string(
'discriminator_model', 'bidirectional',
"Type of Discriminator model. One of ['cnn', 'rnn', 'bidirectional', "
"'rnn_zaremba', 'bidirectional_zaremba', 'rnn_nas', 'rnn_vd', 'seq2seq_vd']"
)
tf.app.flags.DEFINE_boolean('seq2seq_share_embedding', False,
'Whether to share the '
'embeddings between the encoder and decoder.')
tf.app.flags.DEFINE_boolean(
'dis_share_embedding', False, 'Whether to share the '
'embeddings between the generator and discriminator.')
tf.app.flags.DEFINE_boolean('dis_update_share_embedding', False, 'Whether the '
'discriminator should update the shared embedding.')
tf.app.flags.DEFINE_boolean('use_gen_mode', False,
'Use the mode of the generator '
'to produce samples.')
tf.app.flags.DEFINE_boolean('critic_update_dis_vars', False,
'Whether the critic '
'updates the discriminator variables.')
## Training FLAGS.
tf.app.flags.DEFINE_string(
'gen_training_strategy', 'reinforce',
"Method for training the Generator. One of ['cross_entropy', 'reinforce']")
tf.app.flags.DEFINE_string(
'generator_optimizer', 'adam',
"Type of Generator optimizer. One of ['sgd', 'adam']")
tf.app.flags.DEFINE_float('grad_clipping', 10., 'Norm for gradient clipping.')
tf.app.flags.DEFINE_float('advantage_clipping', 5., 'Clipping for advantages.')
tf.app.flags.DEFINE_string(
'baseline_method', None,
"Approach for baseline. One of ['critic', 'dis_batch', 'ema', None]")
tf.app.flags.DEFINE_float('perplexity_threshold', 15000,
'Limit for perplexity before terminating job.')
tf.app.flags.DEFINE_float('zoneout_drop_prob', 0.1,
'Probability for dropping parameter for zoneout.')
tf.app.flags.DEFINE_float('keep_prob', 0.5,
'Probability for keeping parameter for dropout.')
## Logging and evaluation FLAGS.
tf.app.flags.DEFINE_integer('print_every', 250,
'Frequency to print and log the '
'outputs of the model.')
tf.app.flags.DEFINE_integer('max_num_to_print', 5,
'Number of samples to log/print.')
tf.app.flags.DEFINE_boolean('print_verbose', False, 'Whether to print in full.')
tf.app.flags.DEFINE_integer('summaries_every', 100,
'Frequency to compute summaries.')
tf.app.flags.DEFINE_boolean('eval_language_model', False,
'Whether to evaluate on '
'all words as in language modeling.')
tf.app.flags.DEFINE_float('eval_interval_secs', 60,
'Delay for evaluating model.')
tf.app.flags.DEFINE_integer(
'n_gram_eval', 4, """The degree of the n-grams to use for evaluation.""")
tf.app.flags.DEFINE_integer(
'epoch_size_override', None,
'If an integer, this dictates the size of the epochs and will potentially '
'not iterate over all the data.')
tf.app.flags.DEFINE_integer('eval_epoch_size_override', None,
'Number of evaluation steps.')
## Directories and checkpoints.
tf.app.flags.DEFINE_string('base_directory', '/tmp/maskGAN_v0.00',
'Base directory for the logging, events and graph.')
tf.app.flags.DEFINE_string('data_set', 'ptb', 'Data set to operate on. One of'
"['ptb', 'imdb']")
tf.app.flags.DEFINE_string('data_dir', '/tmp/data/ptb',
'Directory for the training data.')
tf.app.flags.DEFINE_string(
'language_model_ckpt_dir', None,
'Directory storing checkpoints to initialize the model. Pretrained models'
'are stored at /tmp/maskGAN/pretrained/')
tf.app.flags.DEFINE_string(
'language_model_ckpt_dir_reversed', None,
'Directory storing checkpoints of reversed models to initialize the model.'
'Pretrained models stored at'
'are stored at /tmp/PTB/pretrained_reversed')
tf.app.flags.DEFINE_string(
'maskgan_ckpt', None,
'Override which checkpoint file to use to restore the '
'model. A pretrained seq2seq_zaremba model is stored at '
'/tmp/maskGAN/pretrain/seq2seq_zaremba/train/model.ckpt-64912')
tf.app.flags.DEFINE_boolean('wasserstein_objective', False,
'(DEPRECATED) Whether to use the WGAN training.')
tf.app.flags.DEFINE_integer('num_rollouts', 1,
'The number of rolled out predictions to make.')
tf.app.flags.DEFINE_float('c_lower', -0.01, 'Lower bound for weights.')
tf.app.flags.DEFINE_float('c_upper', 0.01, 'Upper bound for weights.')
FLAGS = tf.app.flags.FLAGS
def create_hparams():
"""Create the hparams object for generic training hyperparameters."""
hparams = tf.contrib.training.HParams(
gen_num_layers=2,
dis_num_layers=2,
gen_rnn_size=740,
dis_rnn_size=740,
gen_learning_rate=5e-4,
dis_learning_rate=5e-3,
critic_learning_rate=5e-3,
dis_train_iterations=1,
gen_learning_rate_decay=1.0,
gen_full_learning_rate_steps=1e7,
baseline_decay=0.999999,
rl_discount_rate=0.9,
gen_vd_keep_prob=0.5,
dis_vd_keep_prob=0.5,
dis_pretrain_learning_rate=5e-3,
dis_num_filters=128,
dis_hidden_dim=128,
gen_nas_keep_prob_0=0.85,
gen_nas_keep_prob_1=0.55,
dis_nas_keep_prob_0=0.85,
dis_nas_keep_prob_1=0.55)
# Command line flags override any of the preceding hyperparameter values.
if FLAGS.hparams:
hparams = hparams.parse(FLAGS.hparams)
return hparams
def create_MaskGAN(hparams, is_training):
"""Create the MaskGAN model.
Args:
hparams: Hyperparameters for the MaskGAN.
is_training: Boolean indicating operational mode (train/inference).
evaluated with a teacher forcing regime.
Return:
model: Namedtuple for specifying the MaskGAN.
"""
global_step = tf.Variable(0, name='global_step', trainable=False)
new_learning_rate = tf.placeholder(tf.float32, [], name='new_learning_rate')
learning_rate = tf.Variable(0.0, name='learning_rate', trainable=False)
learning_rate_update = tf.assign(learning_rate, new_learning_rate)
new_rate = tf.placeholder(tf.float32, [], name='new_rate')
percent_real_var = tf.Variable(0.0, trainable=False)
percent_real_update = tf.assign(percent_real_var, new_rate)
## Placeholders.
inputs = tf.placeholder(
tf.int32, shape=[FLAGS.batch_size, FLAGS.sequence_length])
targets = tf.placeholder(
tf.int32, shape=[FLAGS.batch_size, FLAGS.sequence_length])
present = tf.placeholder(
tf.bool, shape=[FLAGS.batch_size, FLAGS.sequence_length])
# TODO(adai): Placeholder for IMDB label.
## Real Sequence is the targets.
real_sequence = targets
## Fakse Sequence from the Generator.
# TODO(adai): Generator must have IMDB labels placeholder.
(fake_sequence, fake_logits, fake_log_probs, fake_gen_initial_state,
fake_gen_final_state, _) = model_construction.create_generator(
hparams,
inputs,
targets,
present,
is_training=is_training,
is_validating=False)
(_, eval_logits, _, eval_initial_state, eval_final_state,
_) = model_construction.create_generator(
hparams,
inputs,
targets,
present,
is_training=False,
is_validating=True,
reuse=True)
## Discriminator.
fake_predictions = model_construction.create_discriminator(
hparams,
fake_sequence,
is_training=is_training,
inputs=inputs,
present=present)
real_predictions = model_construction.create_discriminator(
hparams,
real_sequence,
is_training=is_training,
reuse=True,
inputs=inputs,
present=present)
## Critic.
# The critic will be used to estimate the forward rewards to the Generator.
if FLAGS.baseline_method == 'critic':
est_state_values = model_construction.create_critic(
hparams, fake_sequence, is_training=is_training)
else:
est_state_values = None
## Discriminator Loss.
[dis_loss, dis_loss_fake, dis_loss_real] = model_losses.create_dis_loss(
fake_predictions, real_predictions, present)
## Average log-perplexity for only missing words. However, to do this,
# the logits are still computed using teacher forcing, that is, the ground
# truth tokens are fed in at each time point to be valid.
avg_log_perplexity = model_losses.calculate_log_perplexity(
eval_logits, targets, present)
## Generator Objective.
# 1. Cross Entropy losses on missing tokens.
fake_cross_entropy_losses = model_losses.create_masked_cross_entropy_loss(
targets, present, fake_logits)
# 2. GAN REINFORCE losses.
[
fake_RL_loss, fake_log_probs, fake_rewards, fake_advantages,
fake_baselines, fake_averages_op, critic_loss, cumulative_rewards
] = model_losses.calculate_reinforce_objective(
hparams, fake_log_probs, fake_predictions, present, est_state_values)
## Pre-training.
if FLAGS.gen_pretrain_steps:
raise NotImplementedError
# # TODO(liamfedus): Rewrite this.
# fwd_cross_entropy_loss = tf.reduce_mean(fwd_cross_entropy_losses)
# gen_pretrain_op = model_optimization.create_gen_pretrain_op(
# hparams, fwd_cross_entropy_loss, global_step)
else:
gen_pretrain_op = None
if FLAGS.dis_pretrain_steps:
dis_pretrain_op = model_optimization.create_dis_pretrain_op(
hparams, dis_loss, global_step)
else:
dis_pretrain_op = None
## Generator Train Op.
# 1. Cross-Entropy.
if FLAGS.gen_training_strategy == 'cross_entropy':
gen_loss = tf.reduce_mean(fake_cross_entropy_losses)
[gen_train_op, gen_grads,
gen_vars] = model_optimization.create_gen_train_op(
hparams, learning_rate, gen_loss, global_step, mode='MINIMIZE')
# 2. GAN (REINFORCE)
elif FLAGS.gen_training_strategy == 'reinforce':
gen_loss = fake_RL_loss
[gen_train_op, gen_grads,
gen_vars] = model_optimization.create_reinforce_gen_train_op(
hparams, learning_rate, gen_loss, fake_averages_op, global_step)
else:
raise NotImplementedError
## Discriminator Train Op.
dis_train_op, dis_grads, dis_vars = model_optimization.create_dis_train_op(
hparams, dis_loss, global_step)
## Critic Train Op.
if critic_loss is not None:
[critic_train_op, _, _] = model_optimization.create_critic_train_op(
hparams, critic_loss, global_step)
dis_train_op = tf.group(dis_train_op, critic_train_op)
## Summaries.
with tf.name_scope('general'):
tf.summary.scalar('percent_real', percent_real_var)
tf.summary.scalar('learning_rate', learning_rate)
with tf.name_scope('generator_objectives'):
tf.summary.scalar('gen_objective', tf.reduce_mean(gen_loss))
tf.summary.scalar('gen_loss_cross_entropy',
tf.reduce_mean(fake_cross_entropy_losses))
with tf.name_scope('REINFORCE'):
with tf.name_scope('objective'):
tf.summary.scalar('fake_RL_loss', tf.reduce_mean(fake_RL_loss))
with tf.name_scope('rewards'):
helper.variable_summaries(cumulative_rewards, 'rewards')
with tf.name_scope('advantages'):
helper.variable_summaries(fake_advantages, 'advantages')
with tf.name_scope('baselines'):
helper.variable_summaries(fake_baselines, 'baselines')
with tf.name_scope('log_probs'):
helper.variable_summaries(fake_log_probs, 'log_probs')
with tf.name_scope('discriminator_losses'):
tf.summary.scalar('dis_loss', dis_loss)
tf.summary.scalar('dis_loss_fake_sequence', dis_loss_fake)
tf.summary.scalar('dis_loss_prob_fake_sequence', tf.exp(-dis_loss_fake))
tf.summary.scalar('dis_loss_real_sequence', dis_loss_real)
tf.summary.scalar('dis_loss_prob_real_sequence', tf.exp(-dis_loss_real))
if critic_loss is not None:
with tf.name_scope('critic_losses'):
tf.summary.scalar('critic_loss', critic_loss)
with tf.name_scope('logits'):
helper.variable_summaries(fake_logits, 'fake_logits')
for v, g in zip(gen_vars, gen_grads):
helper.variable_summaries(v, v.op.name)
helper.variable_summaries(g, 'grad/' + v.op.name)
for v, g in zip(dis_vars, dis_grads):
helper.variable_summaries(v, v.op.name)
helper.variable_summaries(g, 'grad/' + v.op.name)
merge_summaries_op = tf.summary.merge_all()
text_summary_placeholder = tf.placeholder(tf.string)
text_summary_op = tf.summary.text('Samples', text_summary_placeholder)
# Model saver.
saver = tf.train.Saver(keep_checkpoint_every_n_hours=1, max_to_keep=5)
# Named tuple that captures elements of the MaskGAN model.
Model = collections.namedtuple('Model', [
'inputs', 'targets', 'present', 'percent_real_update', 'new_rate',
'fake_sequence', 'fake_logits', 'fake_rewards', 'fake_baselines',
'fake_advantages', 'fake_log_probs', 'fake_predictions',
'real_predictions', 'fake_cross_entropy_losses', 'fake_gen_initial_state',
'fake_gen_final_state', 'eval_initial_state', 'eval_final_state',
'avg_log_perplexity', 'dis_loss', 'gen_loss', 'critic_loss',
'cumulative_rewards', 'dis_train_op', 'gen_train_op', 'gen_pretrain_op',
'dis_pretrain_op', 'merge_summaries_op', 'global_step',
'new_learning_rate', 'learning_rate_update', 'saver', 'text_summary_op',
'text_summary_placeholder'
])
model = Model(
inputs, targets, present, percent_real_update, new_rate, fake_sequence,
fake_logits, fake_rewards, fake_baselines, fake_advantages,
fake_log_probs, fake_predictions, real_predictions,
fake_cross_entropy_losses, fake_gen_initial_state, fake_gen_final_state,
eval_initial_state, eval_final_state, avg_log_perplexity, dis_loss,
gen_loss, critic_loss, cumulative_rewards, dis_train_op, gen_train_op,
gen_pretrain_op, dis_pretrain_op, merge_summaries_op, global_step,
new_learning_rate, learning_rate_update, saver, text_summary_op,
text_summary_placeholder)
return model
def compute_geometric_average(percent_captured):
"""Compute the geometric average of the n-gram metrics."""
res = 1.
for _, n_gram_percent in percent_captured.iteritems():
res *= n_gram_percent
return np.power(res, 1. / float(len(percent_captured)))
def compute_arithmetic_average(percent_captured):
"""Compute the arithmetic average of the n-gram metrics."""
N = len(percent_captured)
res = 0.
for _, n_gram_percent in percent_captured.iteritems():
res += n_gram_percent
return res / float(N)
def get_iterator(data):
"""Return the data iterator."""
if FLAGS.data_set == 'ptb':
iterator = ptb_loader.ptb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length,
FLAGS.epoch_size_override)
elif FLAGS.data_set == 'imdb':
iterator = imdb_loader.imdb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length)
return iterator
def train_model(hparams, data, log_dir, log, id_to_word, data_ngram_counts):
"""Train model.
Args:
hparams: Hyperparameters for the MaskGAN.
data: Data to evaluate.
log_dir: Directory to save checkpoints.
log: Readable log for the experiment.
id_to_word: Dictionary of indices to words.
data_ngram_counts: Dictionary of hashed(n-gram tuples) to counts in the
data_set.
"""
print('Training model.')
tf.logging.info('Training model.')
# Boolean indicating operational mode.
is_training = True
# Write all the information to the logs.
log.write('hparams\n')
log.write(str(hparams))
log.flush()
is_chief = FLAGS.task == 0
with tf.Graph().as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
container_name = ''
with tf.container(container_name):
# Construct the model.
if FLAGS.num_rollouts == 1:
model = create_MaskGAN(hparams, is_training)
elif FLAGS.num_rollouts > 1:
model = rollout.create_rollout_MaskGAN(hparams, is_training)
else:
raise ValueError
print('\nTrainable Variables in Graph:')
for v in tf.trainable_variables():
print(v)
## Retrieve the initial savers.
init_savers = model_utils.retrieve_init_savers(hparams)
## Initial saver function to supervisor.
init_fn = partial(model_utils.init_fn, init_savers)
# Create the supervisor. It will take care of initialization,
# summaries, checkpoints, and recovery.
sv = tf.train.Supervisor(
logdir=log_dir,
is_chief=is_chief,
saver=model.saver,
global_step=model.global_step,
save_model_secs=60,
recovery_wait_secs=30,
summary_op=None,
init_fn=init_fn)
# Get an initialized, and possibly recovered session. Launch the
# services: Checkpointing, Summaries, step counting.
#
# When multiple replicas of this program are running the services are
# only launched by the 'chief' replica.
with sv.managed_session(FLAGS.master) as sess:
## Pretrain the generator.
if FLAGS.gen_pretrain_steps:
pretrain_mask_gan.pretrain_generator(sv, sess, model, data, log,
id_to_word, data_ngram_counts,
is_chief)
## Pretrain the discriminator.
if FLAGS.dis_pretrain_steps:
pretrain_mask_gan.pretrain_discriminator(
sv, sess, model, data, log, id_to_word, data_ngram_counts,
is_chief)
# Initial indicators for printing and summarizing.
print_step_division = -1
summary_step_division = -1
# Run iterative computation in a loop.
while not sv.ShouldStop():
is_present_rate = FLAGS.is_present_rate
if FLAGS.is_present_rate_decay is not None:
is_present_rate *= (1. - FLAGS.is_present_rate_decay)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# GAN training.
avg_epoch_gen_loss, avg_epoch_dis_loss = [], []
cumulative_costs = 0.
gen_iters = 0
# Generator and Discriminator statefulness initial evaluation.
# TODO(liamfedus): Throughout the code I am implicitly assuming
# that the Generator and Discriminator are equal sized.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
dis_initial_state_eval = fake_gen_initial_state_eval
# Save zeros state to reset later.
zeros_state = fake_gen_initial_state_eval
## Offset Discriminator.
if FLAGS.ps_tasks == 0:
dis_offset = 1
else:
dis_offset = FLAGS.task * 1000 + 1
dis_iterator = get_iterator(data)
for i in range(dis_offset):
try:
dis_x, dis_y, _ = next(dis_iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
dis_x, dis_y, _ = next(dis_iterator)
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {
model.inputs: dis_x,
model.targets: dis_y,
model.present: p
}
if FLAGS.data_set == 'ptb':
# Statefulness of the Generator being used for Discriminator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = dis_initial_state_eval[i].c
train_feed[h] = dis_initial_state_eval[i].h
# Determine the state had the Generator run over real data. We
# use this state for the Discriminator.
[dis_initial_state_eval] = sess.run(
[model.fake_gen_final_state], train_feed)
## Training loop.
iterator = get_iterator(data)
gen_initial_state_eval = zeros_state
if FLAGS.ps_tasks > 0:
gen_offset = FLAGS.task * 1000 + 1
for i in range(gen_offset):
try:
next(iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
next(dis_iterator)
for x, y, _ in iterator:
for _ in xrange(hparams.dis_train_iterations):
try:
dis_x, dis_y, _ = next(dis_iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
dis_x, dis_y, _ = next(dis_iterator)
if FLAGS.data_set == 'ptb':
[dis_initial_state_eval] = sess.run(
[model.fake_gen_initial_state])
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {
model.inputs: dis_x,
model.targets: dis_y,
model.present: p
}
# Statefulness for the Discriminator.
if FLAGS.data_set == 'ptb':
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = dis_initial_state_eval[i].c
train_feed[h] = dis_initial_state_eval[i].h
_, dis_loss_eval, step = sess.run(
[model.dis_train_op, model.dis_loss, model.global_step],
feed_dict=train_feed)
# Determine the state had the Generator run over real data.
# Use this state for the Discriminator.
[dis_initial_state_eval] = sess.run(
[model.fake_gen_final_state], train_feed)
# Randomly mask out tokens.
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {model.inputs: x, model.targets: y, model.present: p}
# Statefulness for Generator.
if FLAGS.data_set == 'ptb':
tf.logging.info('Generator is stateful.')
print('Generator is stateful.')
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
train_feed[c] = gen_initial_state_eval[i].c
train_feed[h] = gen_initial_state_eval[i].h
# Statefulness for Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = fake_gen_initial_state_eval[i].c
train_feed[h] = fake_gen_initial_state_eval[i].h
# Determine whether to decay learning rate.
lr_decay = hparams.gen_learning_rate_decay**max(
step + 1 - hparams.gen_full_learning_rate_steps, 0.0)
# Assign learning rate.
gen_learning_rate = hparams.gen_learning_rate * lr_decay
model_utils.assign_learning_rate(sess, model.learning_rate_update,
model.new_learning_rate,
gen_learning_rate)
[_, gen_loss_eval, gen_log_perplexity_eval, step] = sess.run(
[
model.gen_train_op, model.gen_loss,
model.avg_log_perplexity, model.global_step
],
feed_dict=train_feed)
cumulative_costs += gen_log_perplexity_eval
gen_iters += 1
# Determine the state had the Generator run over real data.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_final_state,
model.fake_gen_final_state], train_feed)
avg_epoch_dis_loss.append(dis_loss_eval)
avg_epoch_gen_loss.append(gen_loss_eval)
## Summaries.
# Calulate rolling perplexity.
perplexity = np.exp(cumulative_costs / gen_iters)
if is_chief and (step / FLAGS.summaries_every >
summary_step_division):
summary_step_division = step / FLAGS.summaries_every
# Confirm perplexity is not infinite.
if (not np.isfinite(perplexity) or
perplexity >= FLAGS.perplexity_threshold):
print('Training raising FloatingPoinError.')
raise FloatingPointError(
'Training infinite perplexity: %.3f' % perplexity)
# Graph summaries.
summary_str = sess.run(
model.merge_summaries_op, feed_dict=train_feed)
sv.SummaryComputed(sess, summary_str)
# Summary: n-gram
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, train_feed,
data_ngram_count, int(n))
summary_percent_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/%s-grams_percent_correct' % n,
simple_value=batch_percent_captured)
])
sv.SummaryComputed(
sess, summary_percent_str, global_step=step)
# Summary: geometric_avg
geometric_avg = compute_geometric_average(avg_percent_captured)
summary_geometric_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/geometric_avg', simple_value=geometric_avg)
])
sv.SummaryComputed(
sess, summary_geometric_avg_str, global_step=step)
# Summary: arithmetic_avg
arithmetic_avg = compute_arithmetic_average(
avg_percent_captured)
summary_arithmetic_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/arithmetic_avg',
simple_value=arithmetic_avg)
])
sv.SummaryComputed(
sess, summary_arithmetic_avg_str, global_step=step)
# Summary: perplexity
summary_perplexity_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/perplexity', simple_value=perplexity)
])
sv.SummaryComputed(
sess, summary_perplexity_str, global_step=step)
## Printing and logging
if is_chief and (step / FLAGS.print_every > print_step_division):
print_step_division = (step / FLAGS.print_every)
print('global_step: %d' % step)
print(' perplexity: %.3f' % perplexity)
print(' gen_learning_rate: %.6f' % gen_learning_rate)
log.write('global_step: %d\n' % step)
log.write(' perplexity: %.3f\n' % perplexity)
log.write(' gen_learning_rate: %.6f' % gen_learning_rate)
# Average percent captured for each of the n-grams.
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, train_feed,
data_ngram_count, int(n))
avg_percent_captured[n] = batch_percent_captured
print(' percent of %s-grams captured: %.3f.' %
(n, batch_percent_captured))
log.write(' percent of %s-grams captured: %.3f.\n' %
(n, batch_percent_captured))
geometric_avg = compute_geometric_average(avg_percent_captured)
print(' geometric_avg: %.3f.' % geometric_avg)
log.write(' geometric_avg: %.3f.' % geometric_avg)
arithmetic_avg = compute_arithmetic_average(
avg_percent_captured)
print(' arithmetic_avg: %.3f.' % arithmetic_avg)
log.write(' arithmetic_avg: %.3f.' % arithmetic_avg)
evaluation_utils.print_and_log_losses(
log, step, is_present_rate, avg_epoch_dis_loss,
avg_epoch_gen_loss)
if FLAGS.gen_training_strategy == 'reinforce':
evaluation_utils.generate_RL_logs(sess, model, log,
id_to_word, train_feed)
else:
evaluation_utils.generate_logs(sess, model, log, id_to_word,
train_feed)
log.flush()
log.close()
def evaluate_once(data, sv, model, sess, train_dir, log, id_to_word,
data_ngram_counts, eval_saver):
"""Evaluate model for a number of steps.
Args:
data: Dataset.
sv: Supervisor.
model: The GAN model we have just built.
sess: A session to use.
train_dir: Path to a directory containing checkpoints.
log: Evaluation log for evaluation.
id_to_word: Dictionary of indices to words.
data_ngram_counts: Dictionary of hashed(n-gram tuples) to counts in the
data_set.
eval_saver: Evaluation saver.r.
"""
tf.logging.info('Evaluate Once.')
# Load the last model checkpoint, or initialize the graph.
model_save_path = tf.latest_checkpoint(train_dir)
if not model_save_path:
tf.logging.warning('No checkpoint yet in: %s', train_dir)
return
tf.logging.info('Starting eval of: %s' % model_save_path)
tf.logging.info('Only restoring trainable variables.')
eval_saver.restore(sess, model_save_path)
# Run the requested number of evaluation steps
avg_epoch_gen_loss, avg_epoch_dis_loss = [], []
cumulative_costs = 0.
# Average percent captured for each of the n-grams.
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
# Set a random seed to keep fixed mask.
np.random.seed(0)
gen_iters = 0
# Generator statefulness over the epoch.
# TODO(liamfedus): Check this.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
if FLAGS.eval_language_model:
is_present_rate = 0.
tf.logging.info('Overriding is_present_rate=0. for evaluation.')
print('Overriding is_present_rate=0. for evaluation.')
iterator = get_iterator(data)
for x, y, _ in iterator:
if FLAGS.eval_language_model:
is_present_rate = 0.
else:
is_present_rate = FLAGS.is_present_rate
tf.logging.info('Evaluating on is_present_rate=%.3f.' % is_present_rate)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# Randomly mask out tokens.
p = model_utils.generate_mask()
eval_feed = {model.inputs: x, model.targets: y, model.present: p}
if FLAGS.data_set == 'ptb':
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
eval_feed[c] = gen_initial_state_eval[i].c
eval_feed[h] = gen_initial_state_eval[i].h
# Statefulness for the Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
eval_feed[c] = fake_gen_initial_state_eval[i].c
eval_feed[h] = fake_gen_initial_state_eval[i].h
[
gen_log_perplexity_eval, dis_loss_eval, gen_loss_eval,
gen_initial_state_eval, fake_gen_initial_state_eval, step
] = sess.run(
[
model.avg_log_perplexity, model.dis_loss, model.gen_loss,
model.eval_final_state, model.fake_gen_final_state,
model.global_step
],
feed_dict=eval_feed)
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, eval_feed, data_ngram_count, int(n))
avg_percent_captured[n] += batch_percent_captured
cumulative_costs += gen_log_perplexity_eval
avg_epoch_dis_loss.append(dis_loss_eval)
avg_epoch_gen_loss.append(gen_loss_eval)
gen_iters += 1
# Calulate rolling metrics.
perplexity = np.exp(cumulative_costs / gen_iters)
for n, _ in avg_percent_captured.iteritems():
avg_percent_captured[n] /= gen_iters
# Confirm perplexity is not infinite.
if not np.isfinite(perplexity) or perplexity >= FLAGS.perplexity_threshold:
print('Evaluation raising FloatingPointError.')
raise FloatingPointError(
'Evaluation infinite perplexity: %.3f' % perplexity)
## Printing and logging.
evaluation_utils.print_and_log_losses(log, step, is_present_rate,
avg_epoch_dis_loss, avg_epoch_gen_loss)
print(' perplexity: %.3f' % perplexity)
log.write(' perplexity: %.3f\n' % perplexity)
for n, n_gram_percent in avg_percent_captured.iteritems():
n = int(n)
print(' percent of %d-grams captured: %.3f.' % (n, n_gram_percent))
log.write(' percent of %d-grams captured: %.3f.\n' % (n, n_gram_percent))
samples = evaluation_utils.generate_logs(sess, model, log, id_to_word,
eval_feed)
## Summaries.
summary_str = sess.run(model.merge_summaries_op, feed_dict=eval_feed)
sv.SummaryComputed(sess, summary_str)
# Summary: text
summary_str = sess.run(model.text_summary_op,
{model.text_summary_placeholder: '\n\n'.join(samples)})
sv.SummaryComputed(sess, summary_str, global_step=step)
# Summary: n-gram
for n, n_gram_percent in avg_percent_captured.iteritems():
n = int(n)
summary_percent_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/%d-grams_percent_correct' % n,
simple_value=n_gram_percent)
])
sv.SummaryComputed(sess, summary_percent_str, global_step=step)
# Summary: geometric_avg
geometric_avg = compute_geometric_average(avg_percent_captured)
summary_geometric_avg_str = tf.Summary(value=[
tf.Summary.Value(tag='general/geometric_avg', simple_value=geometric_avg)
])
sv.SummaryComputed(sess, summary_geometric_avg_str, global_step=step)
# Summary: arithmetic_avg
arithmetic_avg = compute_arithmetic_average(avg_percent_captured)
summary_arithmetic_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/arithmetic_avg', simple_value=arithmetic_avg)
])
sv.SummaryComputed(sess, summary_arithmetic_avg_str, global_step=step)
# Summary: perplexity
summary_perplexity_str = tf.Summary(value=[
tf.Summary.Value(tag='general/perplexity', simple_value=perplexity)