-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
129 lines (99 loc) · 5.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import tensorflow as tf
from tensorflow.keras.layers import (Conv2D, Activation, BatchNormalization, UpSampling2D,
Input, Concatenate, Add, Dropout, GlobalAveragePooling2D,
Reshape, Dense, multiply, Resizing)
from tensorflow.keras.models import Model
from tensorflow.keras.applications import EfficientNetB3
from tensorflow.keras.layers import GlobalMaxPooling2D, Conv2D
from tensorflow.keras.regularizers import l1_l2
def channel_attention_module(input_feature, ratio=8):
channel = input_feature.shape[-1]
shared_dense_one = Dense(channel//ratio, activation='relu', kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
shared_dense_two = Dense(channel, kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = shared_dense_one(avg_pool)
avg_pool = shared_dense_two(avg_pool)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = shared_dense_one(max_pool)
max_pool = shared_dense_two(max_pool)
attention_feature = Add()([avg_pool, max_pool])
attention_feature = Activation('sigmoid')(attention_feature)
return multiply([input_feature, attention_feature])
def spatial_attention_module(input_feature):
kernel_size = 7
avg_pool = tf.reduce_mean(input_feature, axis=-1, keepdims=True)
max_pool = tf.reduce_max(input_feature, axis=-1, keepdims=True)
concat = Concatenate(axis=-1)([avg_pool, max_pool])
attention_feature = Conv2D(filters=1, kernel_size=kernel_size, strides=1, padding='same', activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(concat)
return multiply([input_feature, attention_feature])
def cbam_module(input_feature, ratio=8):
channel_attention = channel_attention_module(input_feature, ratio)
spatial_attention = spatial_attention_module(channel_attention)
return spatial_attention
def squeeze_excitation_module(input_feature, ratio=16):
channel_axis = -1
filters = input_feature.shape[channel_axis]
se_shape = (1, 1, filters)
squeeze = GlobalAveragePooling2D()(input_feature)
squeeze = Reshape(se_shape)(squeeze)
excitation = Dense(filters // ratio, activation='relu')(squeeze)
excitation = Dense(filters, activation='sigmoid')(excitation)
scale = multiply([input_feature, excitation])
return scale
def residual_block(input_feature, num_filters, dropout_rate=0.5):
x = input_feature
x = Conv2D(num_filters//4, (1, 1), padding="same", kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4))(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(num_filters//4, (3, 3), padding="same", kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4))(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(num_filters, (3, 3), padding="same", kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4))(x)
x = BatchNormalization()(x)
shortcut = Conv2D(num_filters, (1, 1), padding="same", kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4))(input_feature)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation("relu")(x)
x = squeeze_excitation_module(x)
x = Dropout(dropout_rate)(x)
return x
def decoder_block(input_feature, skip_connection, num_filters, dropout_rate=0.5):
x = UpSampling2D((2, 2), interpolation='bilinear')(input_feature)
skip_connection = Resizing(x.shape[1], x.shape[2], interpolation='bilinear')(skip_connection)
x = Concatenate()([x, skip_connection])
x = residual_block(x, num_filters, dropout_rate=dropout_rate)
x = cbam_module(x)
return x
def BetterNet(input_shape, num_classes, dropout_rate=0.5):
inputs = Input(shape=input_shape, name="input_image")
encoder = EfficientNetB3(input_tensor=inputs, weights="imagenet", include_top=False)
skip_connection_names = [
'input_image',
'block2a_expand_activation',
'block3a_expand_activation',
'block4a_expand_activation',
'block6a_expand_activation'
]
skip_connections = [encoder.get_layer(name).output for name in skip_connection_names]
x = encoder.output
decoder_filters = [192, 128, 64, 32, 16]
for i, filters in enumerate(decoder_filters):
if i < len(skip_connections) - 1:
skip_connection = skip_connections[-(i + 2)]
x = decoder_block(x, skip_connection, filters, dropout_rate=dropout_rate)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = Conv2D(num_classes, (1, 1), padding="same")(x)
output = Activation("sigmoid", name="output_image")(x)
model = Model(inputs, outputs=output, name="BetterNet")
return model
if __name__ == "__main__":
params = {
"img_height": 224,
"img_width": 224,
"img_channels": 3,
"mask_channels": 1
}
model = BetterNet(input_shape=(params["img_height"], params["img_width"], params["img_channels"]),
num_classes=params["mask_channels"],
dropout_rate=0.5)
model.summary()