|
| 1 | +import os |
| 2 | +import pickle |
| 3 | +import sys |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import scipy.sparse as sparse |
| 8 | +import yaml |
| 9 | +from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer |
| 10 | + |
| 11 | + |
| 12 | +def get_df(data): |
| 13 | + """Read the input data file and return a data frame.""" |
| 14 | + df = pd.read_csv( |
| 15 | + data, |
| 16 | + encoding="utf-8", |
| 17 | + header=None, |
| 18 | + delimiter="\t", |
| 19 | + names=["id", "label", "text"], |
| 20 | + ) |
| 21 | + sys.stderr.write(f"The input data frame {data} size is {df.shape}\n") |
| 22 | + return df |
| 23 | + |
| 24 | + |
| 25 | +def save_matrix(df, matrix, names, output): |
| 26 | + """ |
| 27 | + Save the matrix to a pickle file. |
| 28 | +
|
| 29 | + Args: |
| 30 | + df (pandas.DataFrame): Input data frame. |
| 31 | + matrix (scipy.sparse.csr_matrix): Input matrix. |
| 32 | + names (list): List of feature names. |
| 33 | + output (str): Output file name. |
| 34 | + """ |
| 35 | + id_matrix = sparse.csr_matrix(df.id.astype(np.int64)).T |
| 36 | + label_matrix = sparse.csr_matrix(df.label.astype(np.int64)).T |
| 37 | + |
| 38 | + result = sparse.hstack([id_matrix, label_matrix, matrix], format="csr") |
| 39 | + |
| 40 | + msg = "The output matrix {} size is {} and data type is {}\n" |
| 41 | + sys.stderr.write(msg.format(output, result.shape, result.dtype)) |
| 42 | + |
| 43 | + with open(output, "wb") as fd: |
| 44 | + pickle.dump((result, names), fd) |
| 45 | + pass |
| 46 | + |
| 47 | + |
| 48 | +def generate_and_save_train_features(train_input, train_output, bag_of_words, tfidf): |
| 49 | + """ |
| 50 | + Generate train feature matrix. |
| 51 | +
|
| 52 | + Args: |
| 53 | + train_input (str): Train input file name. |
| 54 | + train_output (str): Train output file name. |
| 55 | + bag_of_words (sklearn.feature_extraction.text.CountVectorizer): Bag of words. |
| 56 | + tfidf (sklearn.feature_extraction.text.TfidfTransformer): TF-IDF transformer. |
| 57 | + """ |
| 58 | + df_train = get_df(train_input) |
| 59 | + train_words = np.array(df_train.text.str.lower().values) |
| 60 | + |
| 61 | + bag_of_words.fit(train_words) |
| 62 | + |
| 63 | + train_words_binary_matrix = bag_of_words.transform(train_words) |
| 64 | + feature_names = bag_of_words.get_feature_names_out() |
| 65 | + |
| 66 | + tfidf.fit(train_words_binary_matrix) |
| 67 | + train_words_tfidf_matrix = tfidf.transform(train_words_binary_matrix) |
| 68 | + |
| 69 | + save_matrix(df_train, train_words_tfidf_matrix, feature_names, train_output) |
| 70 | + |
| 71 | + |
| 72 | +def generate_and_save_test_features(test_input, test_output, bag_of_words, tfidf): |
| 73 | + """ |
| 74 | + Generate test feature matrix. |
| 75 | +
|
| 76 | + Args: |
| 77 | + test_input (str): Test input file name. |
| 78 | + test_output (str): Test output file name. |
| 79 | + bag_of_words (sklearn.feature_extraction.text.CountVectorizer): Bag of words. |
| 80 | + tfidf (sklearn.feature_extraction.text.TfidfTransformer): TF-IDF transformer. |
| 81 | + """ |
| 82 | + df_test = get_df(test_input) |
| 83 | + test_words = np.array(df_test.text.str.lower().values) |
| 84 | + |
| 85 | + test_words_binary_matrix = bag_of_words.transform(test_words) |
| 86 | + test_words_tfidf_matrix = tfidf.transform(test_words_binary_matrix) |
| 87 | + feature_names = bag_of_words.get_feature_names_out() |
| 88 | + |
| 89 | + save_matrix(df_test, test_words_tfidf_matrix, feature_names, test_output) |
| 90 | + |
| 91 | + |
| 92 | +def main(): |
| 93 | + params = yaml.safe_load(open("params.yaml"))["featurize"] |
| 94 | + |
| 95 | + np.set_printoptions(suppress=True) |
| 96 | + |
| 97 | + if len(sys.argv) != 3 and len(sys.argv) != 5: |
| 98 | + sys.stderr.write("Arguments error. Usage:\n") |
| 99 | + sys.stderr.write("\tpython featurization.py data-dir-path features-dir-path\n") |
| 100 | + sys.exit(1) |
| 101 | + |
| 102 | + in_path = sys.argv[1] |
| 103 | + out_path = sys.argv[2] |
| 104 | + |
| 105 | + train_input = os.path.join(in_path, "train.tsv") |
| 106 | + test_input = os.path.join(in_path, "test.tsv") |
| 107 | + train_output = os.path.join(out_path, "train.pkl") |
| 108 | + test_output = os.path.join(out_path, "test.pkl") |
| 109 | + |
| 110 | + max_features = params["max_features"] |
| 111 | + ngrams = params["ngrams"] |
| 112 | + |
| 113 | + os.makedirs(out_path, exist_ok=True) |
| 114 | + |
| 115 | + bag_of_words = CountVectorizer( |
| 116 | + stop_words="english", max_features=max_features, ngram_range=(1, ngrams) |
| 117 | + ) |
| 118 | + tfidf = TfidfTransformer(smooth_idf=False) |
| 119 | + |
| 120 | + generate_and_save_train_features( |
| 121 | + train_input=train_input, |
| 122 | + train_output=train_output, |
| 123 | + bag_of_words=bag_of_words, |
| 124 | + tfidf=tfidf, |
| 125 | + ) |
| 126 | + |
| 127 | + generate_and_save_test_features( |
| 128 | + test_input=test_input, |
| 129 | + test_output=test_output, |
| 130 | + bag_of_words=bag_of_words, |
| 131 | + tfidf=tfidf, |
| 132 | + ) |
| 133 | + |
| 134 | + |
| 135 | +if __name__ == "__main__": |
| 136 | + main() |
0 commit comments