-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
549 lines (522 loc) · 25.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import argparse
import os
import numpy as np
import torch
from torchvision.utils import save_image
from tqdm.auto import tqdm, trange
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from data import get_dataset, get_dataset_config
from models import InfoDiff, Diff, VAE
from sampling import DiffusionProcess, TwoPhaseDiffusionProcess, LatentDiffusionProcess
from utils import (
AverageMeter, ProgressMeter, GradualWarmupScheduler, \
generate_exp_string, seed_everything, cos, LatentDataset
)
import matplotlib.pyplot as plt
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
# ----------------------------------------------------------------------------
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--r_seed', type=int, default=0,
help='the value of given random seed')
parser.add_argument('--img_id', type=int, default=0,
help='the id of given img')
parser.add_argument('--model', required=True,
choices=['diff', 'vae', 'vanilla'], help='which type of model to run')
parser.add_argument('--mode', required=True,
choices=['train', 'eval', 'eval_fid', 'save_latent', 'disentangle',
'interpolate', 'save_original_img', 'latent_quality',
'train_latent_ddim', 'plot_latent'], help='which mode to run')
parser.add_argument('--prior', required=True,
choices=['regular', '10mix', 'roll'], help='which type of prior to run')
parser.add_argument('--kld_weight', type=float, default=0,
help='weight of kld loss')
parser.add_argument('--mmd_weight', type=float, default=0.1,
help='weight of mmd loss')
parser.add_argument('--use_C', action='store_true',
default=False, help='use control constant or not')
parser.add_argument('--C_max', type=float, default=25,
help='control constant of kld loss (orig defualt: 25 for simple, 50 for complex)')
parser.add_argument('--dataset', required=True,
choices=['fmnist', 'mnist', 'celeba', 'cifar10', 'dsprites', 'chairs', 'ffhq'], help='training dataset')
parser.add_argument('--img_folder', default='./imgs',
help='path to save sampled images')
parser.add_argument('--log_folder', default='./logs',
help='path to save logs')
parser.add_argument('-e', '--epochs', type=int, default=20,
help='number of epochs to train')
parser.add_argument('--save_epochs', type=int, default=5,
help='number of epochs to save model')
parser.add_argument('--batch_size', type=int, default=64,
help='training batch size')
parser.add_argument('--learning_rate', type=float, default=0.0001,
help='learning rate')
parser.add_argument('--optimizer', default='adam', choices=['adam'],
help='optimization algorithm')
parser.add_argument('--model_folder', default='./models',
help='folder where logs will be stored')
parser.add_argument('--deterministic', action='store_true',
default=False, help='deterministid sampling')
parser.add_argument('--input_channels', type=int, default=1,
help='number of input channels')
parser.add_argument('--unets_channels', type=int, default=64,
help='number of input channels')
parser.add_argument('--encoder_channels', type=int, default=64,
help='number of input channels')
parser.add_argument('--input_size', type=int, default=32,
help='expected size of input')
parser.add_argument('--a_dim', type=int, default=32, required=True,
help='dimensionality of auxiliary variable')
parser.add_argument('--beta1', type=float, default=1e-5,
help='value of beta 1')
parser.add_argument('--betaT', type=float, default=1e-2,
help='value of beta T')
parser.add_argument('--diffusion_steps', type=int, default=1000,
help='number of diffusion steps')
parser.add_argument('--split_step', type=int, default=500,
help='the step for splitting two phases')
parser.add_argument('--sampling_number', type=int, default=16,
help='number of sampled images')
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--tb_logger', action='store_true',
help='use tensorboard logger.')
parser.add_argument('--is_latent', action='store_true',
help='use latent diffusion for unconditional sampling.')
parser.add_argument('--is_bottleneck', action='store_true',
help='only fuse aux variable in bottleneck layers.')
args = parser.parse_args()
return args
# ----------------------------------------------------------------------------
def save_images(args, sample=None, epoch=0, sample_num=0):
root = f'{args.img_folder}'
if args.model == 'vae':
root = os.path.join(root, 'vae')
else:
if args.model == 'vanilla':
root = os.path.join(root, 'diff')
root = os.path.join(root, generate_exp_string(args))
if args.mode == 'eval':
root = os.path.join(root, 'eval')
elif args.mode == 'disentangle':
root = os.path.join(root, f'disentangle-{args.img_id}')
elif args.mode == 'interpolate':
root = os.path.join(root, f'interpolate-{args.img_id}')
elif args.mode == 'save_latent':
root = os.path.join(root, 'save_latent')
elif args.mode == 'attr_classification':
root = os.path.join(root, 'attr_classification')
elif args.mode == 'plot_latent':
root = os.path.join(root, 'plot_latent')
os.makedirs(root, exist_ok=True)
path = os.path.join(root, f'sample-{epoch}.png')
img_range = (-1, 1)
if args.mode == 'train':
save_image(sample, path, normalize=True, range=img_range, nrow=4)
elif args.mode == 'eval':
for _ in range(sample_num, sample_num + len(sample)):
path = os.path.join(root, f"sample{sample_num:05d}.png")
save_image(sample, path, normalize=True, range=img_range)
elif args.mode == 'disentangle':
path = os.path.join(root, f"sample{sample_num}.png")
save_image(sample, path, normalize=True, range=img_range, nrow=sample.shape[0])
elif args.mode == 'interpolate':
path = os.path.join(root, f"sample{sample_num}.png")
save_image(sample, path, normalize=True, range=img_range, nrow=sample.shape[0])
elif args.mode == 'plot_latent':
path = os.path.join(root, f"{args.mode}.png")
return path
elif args.mode == 'attr_classification':
return root
def save_model(args, epoch, model):
root = f'{args.model_folder}'
if args.model == 'vae':
root = os.path.join(root, 'vae')
else:
if args.model == 'vanilla':
root = os.path.join(root, 'diff')
root = os.path.join(root, generate_exp_string(args))
if args.mode == "train_latent_ddim":
root += '_latent'
os.makedirs(root, exist_ok=True)
path = os.path.join(root, f'model-{epoch}.pth')
torch.save(model.state_dict(), path)
print(f"Saved PyTorch model state to {path}")
def train(args):
seed_everything(args.r_seed)
log_dir = f'{args.log_folder}'
log_dir = os.path.join(log_dir, generate_exp_string(args))
tb_logger = SummaryWriter(log_dir=log_dir) if args.tb_logger else None
device = "cuda" if torch.cuda.is_available() else "cpu"
shape = get_dataset_config(args)
print(dict(vars(args)))
dataloader = get_dataset(args)
if args.model == 'diff':
model = InfoDiff(args, device, shape)
elif args.model == 'vanilla':
model = Diff(args, device, shape)
elif args.model == 'vae':
model = VAE(args, device, shape)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=1e-5)
losses = AverageMeter('Loss', ':.4f')
progress = ProgressMeter(args.epochs, [losses], prefix='Epoch ')
cosineScheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer, T_max=args.epochs, eta_min=0, last_epoch=-1)
warmUpScheduler = GradualWarmupScheduler(
optimizer=optimizer, multiplier=2., warm_epoch=1, after_scheduler=cosineScheduler)
global_step = 0
for curr_epoch in trange(0, args.epochs, desc="Epoch #"):
total_loss = 0
batch_bar = tqdm(dataloader, desc="Batch #")
for idx, data in enumerate(batch_bar):
if args.dataset in ['fmnist', 'mnist', 'celeba', 'cifar10']:
data = data[0]
data = data.to(device=device)
loss = model.loss_fn(args=args, x=data, curr_epoch=curr_epoch)
batch_bar.set_postfix(loss=format(loss,'.4f'))
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
total_loss += loss.item()
global_step += 1
if tb_logger:
tb_logger.add_scalar('train/loss', loss.item(), global_step)
losses.update(total_loss / idx)
current_epoch = curr_epoch
progress.display(current_epoch)
current_epoch += 1
warmUpScheduler.step()
losses.reset()
if current_epoch % args.save_epochs == 0:
save_model(args, current_epoch, model)
def eval(args):
if args.mode != 'train_latent_ddim':
seed_everything(args.r_seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
shape = get_dataset_config(args)
print(dict(vars(args)))
root = f'{args.model_folder}'
if args.model == 'diff':
model = InfoDiff(args, device, shape)
elif args.model == 'vanilla':
model = Diff(args, device, shape)
root = os.path.join(root, 'diff')
elif args.model == 'vae':
model = VAE(args, device, shape)
root = os.path.join(root, 'vae')
root = os.path.join(root, generate_exp_string(args))
path = os.path.join(root, f'model-{args.epochs}.pth')
print(f"Loading model from {path}")
model.load_state_dict(torch.load(path, map_location=device), strict=False)
if (args.dataset in ['celeba', 'cifar10', 'mnist', 'fmnist', 'ffhq'] and args.mode in ['eval_fid']):
if args.is_latent:
shape_latent = (1, args.a_dim, args.a_dim)
model2 = Diff(args, device, shape_latent)
path2 = f'./models/{generate_exp_string(args)}_latent/model-{args.epochs}.pth'
if os.path.exists(path2):
print(f"Loading model from {path2}")
else:
raise FileNotFoundError("The file path {} does not exist, please train the latent diffusion model first.".format(path2))
model2.load_state_dict(torch.load(path2, map_location=device), strict=True)
else:
model2 = Diff(args, device, shape)
path2 = f'./models/diff/{args.dataset}_{args.a_dim}d/model-{args.epochs}.pth'
if os.path.exists(path2):
print(f"Loading model from {path2}")
else:
raise FileNotFoundError("The file path {} does not exist, please train the vanilla diffusion model first.".format(path2))
model2.load_state_dict(torch.load(path2, map_location=device), strict=True)
model2.eval()
model.eval()
if args.model in ['diff', 'vanilla']:
process = DiffusionProcess(args, model, device, shape)
if args.mode == 'eval':
if args.model in ['diff', 'vanilla']:
for sample_num in trange(0, args.sampling_number, args.batch_size, desc="Generating eval images"):
sample = process.sampling(sampling_number=16)
save_images(args, sample, sample_num=sample_num)
elif args.model == 'vae':
a = torch.randn([args.sampling_number, args.a_dim]).to(device=device)
sample = model.decoder(a)
save_images(args, sample)
elif args.mode == 'eval_fid':
root = f'{args.img_folder}'
if args.model == 'vae':
root = os.path.join(root, 'vae')
root = os.path.join(root, generate_exp_string(args))
if args.is_latent:
root = os.path.join(root, 'eval-fid-latent')
else:
root = os.path.join(root, 'eval-fid-fast')
os.makedirs(root, exist_ok=True)
print(f"Saving images to {root}")
if args.model == 'diff':
if args.is_latent:
process_latent = LatentDiffusionProcess(args, model2, device)
else:
process = TwoPhaseDiffusionProcess(args, model, model2, device, shape)
for sample_num in trange(0, args.sampling_number, args.batch_size, desc="Generating eval images"):
if args.is_latent:
batch_a = process_latent.sampling(sampling_number=args.batch_size)
batch = process.sampling(sampling_number=args.batch_size, a=batch_a)
else:
batch = process.sampling(sampling_number=args.batch_size)
for batch_num, img in enumerate(batch):
img = torch.clip(img, min=-1, max=1)
img = ((img + 1)/2) # normalize to 0 - 1
img_num = sample_num + batch_num
if img_num >= args.sampling_number:
return
path = os.path.join(root, f'sample-{img_num:06d}.png')
save_image(img, path)
print("DONE")
elif args.model == 'vae':
for sample_num in trange(0, args.sampling_number, args.batch_size, desc="Generating eval images"):
a = torch.randn([args.batch_size, args.a_dim]).to(device=device)
batch = model.decoder(a)
for batch_num, img in enumerate(batch):
img = torch.clip(img, min=-1, max=1)
img = ((img + 1)/2) # normalize to 0 - 1
img_num = sample_num + batch_num
if img_num >= args.sampling_number:
return
path = os.path.join(root, f'sample-{img_num:06d}.png')
save_image(img, path)
print("DONE")
elif args.mode == 'latent_quality':
process = DiffusionProcess(args, model, device, shape)
dataloader = get_dataset(args)
root = f'{args.img_folder}'
root = os.path.join(root, generate_exp_string(args))
root = os.path.join(root, 'latent_quality')
print(f"Saving images to {root}")
for idx, data in enumerate(dataloader):
if args.dataset in ['fmnist', 'mnist', 'celeba', 'cifar10', 'dsprites']:
data_all = data
data = data_all[0]
if idx == 10:
break
data = data.to(device=device)
if args.kld_weight != 0:
with torch.no_grad():
_, _, mu, log_var = model.encoder(data)
a = mu + torch.exp(0.5 * log_var)
elif args.mmd_weight != 0:
with torch.no_grad():
a, _, _, _ = model.encoder(data)
xT = process.reverse_sampling(data, a)
xT_original = xT.repeat(args.sampling_number, 1, 1, 1)
a_original = a.repeat(args.sampling_number, 1)
xT = torch.randn_like(xT_original)
batch = process.sampling(xT=xT, a=a_original)
os.makedirs(root, exist_ok=True)
for batch_num, img in enumerate(batch):
img = torch.clip(img, min=-1, max=1)
img = ((img + 1)/2) # normalize to 0 - 1
path = os.path.join(path, f'sample-{batch_num:06d}.png')
save_image(img, path)
elif args.mode == 'plot_latent':
all_a, all_attr = [], []
dataloader = get_dataset(args)
for idx, data in enumerate(dataloader):
if args.dataset in ['fmnist', 'celeba', 'cifar10', 'dsprites', 'mnist']:
data_all = data
data = data_all[0]
if args.dataset in ['celeba', 'fmnist', 'mnist']:
latents_classes = data_all[1]
elif args.dataset == 'dsprites':
latents_classes = data_all[2]
data = data.to(device=device)
if (args.mmd_weight == 0 and args.kld_weight == 0):
with torch.no_grad():
a, _, _, _ = model.encoder(data)
elif (args.mmd_weight != 0):
with torch.no_grad():
a, _, _, _ = model.encoder(data)
else:
with torch.no_grad():
_, _, mu, _ = model.encoder(data)
a = mu
all_a.append(a.cpu().numpy())
all_attr.append(latents_classes)
all_a = np.concatenate(all_a)
all_attr = np.concatenate(all_attr)
plt.scatter(all_a[:, 0], all_a[:, 1], c = all_attr, cmap = 'tab10', s=5)
path = save_images(args)
plt.savefig(path)
elif args.mode == 'disentangle':
dataloader = get_dataset(args)
for idx, data in enumerate(dataloader):
if args.dataset in ['fmnist', 'mnist', 'celeba', 'cifar10', 'dsprites']:
data_all = data
data = data_all[0]
if args.dataset == 'celeba':
latents_classes = data_all[1]
elif args.dataset == 'dsprites':
latents_classes = data_all[2]
if idx == args.img_id:
break
data = data.to(device=device)
# eta = [-3, -2.4, -1.8, -1.2, -0.6, 0.0, 0.6, 1.2, 1.8, 2.4, 3.0]
eta = [-1.5, -1.2, -0.9, -0.6, -0.3, 0.0, 0.3, 0.6, 0.9, 1.2, 1.5]
if args.kld_weight != 0:
with torch.no_grad():
_, _, mu, _ = model.encoder(data)
a = mu
elif args.mmd_weight != 0:
with torch.no_grad():
a, _, _, _ = model.encoder(data)
if args.model == 'diff':
xT = process.reverse_sampling(data, a)
xT = xT.repeat(len(eta), 1, 1, 1)
for k in range(args.a_dim):
a_list = []
for e in eta:
if args.kld_weight != 0:
with torch.no_grad():
_, _, mu, log_var = model.encoder(data)
a = mu
print(mu, log_var)
elif args.mmd_weight != 0:
with torch.no_grad():
a, _, _, _ = model.encoder(data)
a[0][k] = e
a_list.append(a)
a = torch.stack(a_list).squeeze(dim=1)
if args.model == 'diff':
sample = process.sampling(xT=xT, a=a)
elif args.model == 'vae':
sample = model.decoder(a)
save_images(args, sample, sample_num=k)
elif args.mode == 'save_latent':
all_a, all_attr = [], []
dataloader = get_dataset(args)
for idx, data in enumerate(dataloader):
if args.dataset in ['fmnist', 'mnist', 'celeba', 'cifar10', 'dsprites']:
data_all = data
data = data_all[0]
if args.dataset in ['celeba', 'fmnist', 'mnist', 'cifar10']:
latents_classes = data_all[1]
elif args.dataset == 'dsprites':
latents_classes = data_all[2]
else:
latents_classes = ['No Attributes']
data = data.to(device=device)
if args.kld_weight != 0:
with torch.no_grad():
_, _, mu, _ = model.encoder(data)
a = mu
elif args.mmd_weight != 0:
with torch.no_grad():
a, _, _, _ = model.encoder(data)
elif (args.mmd_weight == 0 and args.kld_weight == 0):
with torch.no_grad():
a, _, _, _ = model.encoder(data)
all_a.append(a.cpu().numpy())
all_attr.append(latents_classes)
all_a = np.concatenate(all_a)
all_attr = np.concatenate(all_attr)
np.savez("{}_{}_latent".format(args.model, generate_exp_string(args).replace(".", "_")), all_a = all_a, all_attr = all_attr)
elif args.mode == 'interpolate':
dataloader = get_dataset(args)
for idx, data in enumerate(dataloader):
if args.dataset in ['fmnist', 'mnist', 'celeba', 'cifar10']:
data = data[0]
if idx == args.img_id:
break
data = data.to(device=device)
if args.kld_weight != 0:
with torch.no_grad():
_, _, mu, _ = model.encoder(data)
a = mu
elif args.mmd_weight != 0:
with torch.no_grad():
a, _, _, _ = model.encoder(data)
elif (args.mmd_weight == 0 and args.kld_weight == 0):
with torch.no_grad():
a, _, _, _ = model.encoder(data)
if args.model in ['diff', 'vanilla']:
xT = process.reverse_sampling(data, a)
theta = torch.arccos(cos(xT[0], xT[1]))
a1 = a[0]
a2 = a[1]
eta = [0.0, 0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88, 1.0]
intp_a_list = []
intp_x_list = []
for e in eta:
intp_a_list.append(np.cos(e * np.pi / 2) * a1 + np.sin(e * np.pi / 2) * a2)
if args.model in ['diff', 'vanilla']:
intp_x = (torch.sin((1 - e) * theta) * xT[0] + torch.sin(e * theta) * xT[1]) / torch.sin(theta)
intp_x_list.append(intp_x)
intp_a = torch.stack(intp_a_list)
if args.model in ['diff', 'vanilla']:
intp_x = torch.stack(intp_x_list).squeeze(dim=1)
sample = process.sampling(xT=intp_x, a=intp_a)
elif args.model == 'vae':
sample = model.decoder(intp_a)
save_images(args, sample)
elif args.mode == 'train_latent_ddim':
dataset = LatentDataset("{}_{}_latent.npz".format(args.model, generate_exp_string(args).replace(".", "_")))
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
seed_everything(args.r_seed)
log_dir = f'{args.log_folder}'
log_dir = os.path.join(log_dir, generate_exp_string(args))
log_dir += '_latent'
tb_logger = SummaryWriter(log_dir=log_dir) if args.tb_logger else None
device = "cuda" if torch.cuda.is_available() else "cpu"
shape = (1, args.a_dim, args.a_dim)
model = Diff(args, device, shape)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=1e-5)
losses = AverageMeter('Loss', ':.4f')
progress = ProgressMeter(args.epochs, [losses], prefix='Epoch ')
cosineScheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer, T_max=args.epochs, eta_min=0, last_epoch=-1)
warmUpScheduler = GradualWarmupScheduler(
optimizer=optimizer, multiplier=2., warm_epoch=1, after_scheduler=cosineScheduler)
global_step = 0
for curr_epoch in trange(0, args.epochs, desc="Epoch #"):
total_loss = 0
batch_bar = tqdm(dataloader, desc="Batch #")
for idx, data in enumerate(batch_bar):
data = data.to(device=device)
loss = model.loss_fn(args=args, x=data, curr_epoch=curr_epoch)
batch_bar.set_postfix(loss=format(loss,'.4f'))
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
total_loss += loss.item()
global_step += 1
if tb_logger:
tb_logger.add_scalar('train/loss', loss.item(), global_step)
losses.update(total_loss / idx)
current_epoch = curr_epoch
progress.display(current_epoch)
current_epoch += 1
warmUpScheduler.step()
losses.reset()
if current_epoch % args.save_epochs == 0:
save_model(args, current_epoch, model)
if __name__ == '__main__':
args = parse_args()
if args.mode in ['train']:
train(args)
elif args.mode in ['eval', 'eval_fid', 'latent_quality', 'disentangle', 'interpolate',
'save_latent', 'train_latent_ddim', 'plot_latent']:
if args.mode in ['disentangle', 'latent_quality']:
args.batch_size = 1
elif args.mode == 'interpolate':
args.batch_size = 2
eval(args)
elif args.mode in ['save_original_img']:
from tqdm import tqdm
import os
from torchvision.utils import save_image
output_folder = f'./{args.dataset}_imgs/'
os.makedirs(output_folder, exist_ok=True)
dataloader = get_dataset(args)
for i, img in enumerate(tqdm(dataloader)):
img = ((img[0] + 1)/2) # normalize to 0 - 1
save_image(img, f'{output_folder}/{i:06d}.png')