forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastspi_bitbang.h
368 lines (325 loc) · 16.3 KB
/
fastspi_bitbang.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#ifndef __INC_FASTSPI_BITBANG_H
#define __INC_FASTSPI_BITBANG_H
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Software SPI (aka bit-banging) support - with aggressive optimizations for when the clock and data pin are on the same port
//
// TODO: Replace the select pin definition with a set of pins, to allow using mux hardware for routing in the future
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t DATA_PIN, uint8_t CLOCK_PIN, uint8_t SPI_SPEED>
class AVRSoftwareSPIOutput {
// The data types for pointers to the pin port - typedef'd here from the Pin definition because on avr these
// are pointers to 8 bit values, while on arm they are 32 bit
typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<CLOCK_PIN>::port_ptr_t clock_ptr_t;
// The data type for what's at a pin's port - typedef'd here from the Pin definition because on avr the ports
// are 8 bits wide while on arm they are 32.
typedef typename FastPin<DATA_PIN>::port_t data_t;
typedef typename FastPin<CLOCK_PIN>::port_t clock_t;
Selectable *m_pSelect;
public:
AVRSoftwareSPIOutput() { m_pSelect = NULL; }
AVRSoftwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
// set the pins to output and make sure the select is released (which apparently means hi? This is a bit
// confusing to me)
FastPin<DATA_PIN>::setOutput();
FastPin<CLOCK_PIN>::setOutput();
release();
}
// stop the SPI output. Pretty much a NOP with software, as there's no registers to kick
static void stop() { }
// wait until the SPI subsystem is ready for more data to write. A NOP when bitbanging
static void wait() __attribute__((always_inline)) { }
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { writeByte(b); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { writeByte(b); wait(); }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
// naive writeByte implelentation, simply calls writeBit on the 8 bits in the byte.
static void writeByte(uint8_t b) __attribute__((always_inline)) {
writeBit<7>(b);
writeBit<6>(b);
writeBit<5>(b);
writeBit<4>(b);
writeBit<3>(b);
writeBit<2>(b);
writeBit<1>(b);
writeBit<0>(b);
}
private:
// writeByte implementation with data/clock registers passed in.
static void writeByte(uint8_t b, clock_ptr_t clockpin, data_ptr_t datapin) __attribute__((always_inline)) {
writeBit<7>(b, clockpin, datapin);
writeBit<6>(b, clockpin, datapin);
writeBit<5>(b, clockpin, datapin);
writeBit<4>(b, clockpin, datapin);
writeBit<3>(b, clockpin, datapin);
writeBit<2>(b, clockpin, datapin);
writeBit<1>(b, clockpin, datapin);
writeBit<0>(b, clockpin, datapin);
}
// writeByte implementation with the data register passed in and prebaked values for data hi w/clock hi and
// low and data lo w/clock hi and lo. This is to be used when clock and data are on the same GPIO register,
// can get close to getting a bit out the door in 2 clock cycles!
static void writeByte(uint8_t b, data_ptr_t datapin,
data_t hival, data_t loval,
clock_t hiclock, clock_t loclock) __attribute__((always_inline, hot)) {
writeBit<7>(b, datapin, hival, loval, hiclock, loclock);
writeBit<6>(b, datapin, hival, loval, hiclock, loclock);
writeBit<5>(b, datapin, hival, loval, hiclock, loclock);
writeBit<4>(b, datapin, hival, loval, hiclock, loclock);
writeBit<3>(b, datapin, hival, loval, hiclock, loclock);
writeBit<2>(b, datapin, hival, loval, hiclock, loclock);
writeBit<1>(b, datapin, hival, loval, hiclock, loclock);
writeBit<0>(b, datapin, hival, loval, hiclock, loclock);
}
// writeByte implementation with not just registers passed in, but pre-baked values for said registers for
// data hi/lo and clock hi/lo values. Note: weird things will happen if this method is called in cases where
// the data and clock pins are on the same port! Don't do that!
static void writeByte(uint8_t b, clock_ptr_t clockpin, data_ptr_t datapin,
data_t hival, data_t loval,
clock_t hiclock, clock_t loclock) __attribute__((always_inline)) {
writeBit<7>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<6>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<5>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<4>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<3>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<2>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<1>(b, clockpin, datapin, hival, loval, hiclock, loclock);
writeBit<0>(b, clockpin, datapin, hival, loval, hiclock, loclock);
}
public:
#define SPI_DELAY delaycycles< (SPI_SPEED-2) / 2>();
// write the BIT'th bit out via spi, setting the data pin then strobing the clcok
template <uint8_t BIT> __attribute__((always_inline, hot)) inline static void writeBit(uint8_t b) {
if(b & (1 << BIT)) {
FastPin<DATA_PIN>::hi();
if(SPI_SPEED < 3) {
FastPin<CLOCK_PIN>::strobe();
} else {
FastPin<CLOCK_PIN>::hi(); SPI_DELAY;
FastPin<CLOCK_PIN>::lo(); SPI_DELAY;
}
} else {
FastPin<DATA_PIN>::lo();
if(SPI_SPEED < 3) {
FastPin<CLOCK_PIN>::strobe();
} else {
FastPin<CLOCK_PIN>::hi(); SPI_DELAY;
FastPin<CLOCK_PIN>::lo(); SPI_DELAY;
}
}
}
private:
// write the BIT'th bit out via spi, setting the data pin then strobing the clock, using the passed in pin registers to accelerate access if needed
template <uint8_t BIT> __attribute__((always_inline)) inline static void writeBit(uint8_t b, clock_ptr_t clockpin, data_ptr_t datapin) {
if(b & (1 << BIT)) {
FastPin<DATA_PIN>::hi(datapin);
FastPin<CLOCK_PIN>::hi(clockpin); SPI_DELAY;
FastPin<CLOCK_PIN>::lo(clockpin); SPI_DELAY;
} else {
FastPin<DATA_PIN>::lo(datapin);
FastPin<CLOCK_PIN>::hi(clockpin); SPI_DELAY;
FastPin<CLOCK_PIN>::lo(clockpin); SPI_DELAY;
}
}
// the version of write to use when clock and data are on separate pins with precomputed values for setting
// the clock and data pins
template <uint8_t BIT> __attribute__((always_inline)) inline static void writeBit(uint8_t b, clock_ptr_t clockpin, data_ptr_t datapin,
data_t hival, data_t loval, clock_t hiclock, clock_t loclock) {
// // only need to explicitly set clock hi if clock and data are on different ports
if(b & (1 << BIT)) {
FastPin<DATA_PIN>::fastset(datapin, hival);
FastPin<CLOCK_PIN>::fastset(clockpin, hiclock); SPI_DELAY;
FastPin<CLOCK_PIN>::fastset(clockpin, loclock); SPI_DELAY;
} else {
// NOP;
FastPin<DATA_PIN>::fastset(datapin, loval);
FastPin<CLOCK_PIN>::fastset(clockpin, hiclock); SPI_DELAY;
FastPin<CLOCK_PIN>::fastset(clockpin, loclock); SPI_DELAY;
}
}
// the version of write to use when clock and data are on the same port with precomputed values for the various
// combinations
template <uint8_t BIT> __attribute__((always_inline)) inline static void writeBit(uint8_t b, data_ptr_t clockdatapin,
data_t datahiclockhi, data_t dataloclockhi,
data_t datahiclocklo, data_t dataloclocklo) {
#if 0
writeBit<BIT>(b);
#else
if(b & (1 << BIT)) {
FastPin<DATA_PIN>::fastset(clockdatapin, datahiclocklo); SPI_DELAY;
FastPin<DATA_PIN>::fastset(clockdatapin, datahiclockhi); SPI_DELAY;
FastPin<DATA_PIN>::fastset(clockdatapin, datahiclocklo); SPI_DELAY;
} else {
// NOP;
FastPin<DATA_PIN>::fastset(clockdatapin, dataloclocklo); SPI_DELAY;
FastPin<DATA_PIN>::fastset(clockdatapin, dataloclockhi); SPI_DELAY;
FastPin<DATA_PIN>::fastset(clockdatapin, dataloclocklo); SPI_DELAY;
}
#endif
}
public:
// select the SPI output (TODO: research whether this really means hi or lo. Alt TODO: move select responsibility out of the SPI classes
// entirely, make it up to the caller to remember to lock/select the line?)
void select() { if(m_pSelect != NULL) { m_pSelect->select(); } } // FastPin<SELECT_PIN>::hi(); }
// release the SPI line
void release() { if(m_pSelect != NULL) { m_pSelect->release(); } } // FastPin<SELECT_PIN>::lo(); }
// Write out len bytes of the given value out over SPI. Useful for quickly flushing, say, a line of 0's down the line.
void writeBytesValue(uint8_t value, int len) {
select();
writeBytesValueRaw(value, len);
release();
}
static void writeBytesValueRaw(uint8_t value, int len) {
#ifdef FAST_SPI_INTERRUPTS_WRITE_PINS
// TODO: Weird things may happen if software bitbanging SPI output and other pins on the output reigsters are being twiddled. Need
// to allow specifying whether or not exclusive i/o access is allowed during this process, and if i/o access is not allowed fall
// back to the degenerative code below
while(len--) {
writeByte(value);
}
#else
register data_ptr_t datapin = FastPin<DATA_PIN>::port();
if(FastPin<DATA_PIN>::port() != FastPin<CLOCK_PIN>::port()) {
// If data and clock are on different ports, then writing a bit will consist of writing the value foor
// the bit (hi or low) to the data pin port, and then two writes to the clock port to strobe the clock line
register clock_ptr_t clockpin = FastPin<CLOCK_PIN>::port();
register data_t datahi = FastPin<DATA_PIN>::hival();
register data_t datalo = FastPin<DATA_PIN>::loval();
register clock_t clockhi = FastPin<CLOCK_PIN>::hival();
register clock_t clocklo = FastPin<CLOCK_PIN>::loval();
while(len--) {
writeByte(value, clockpin, datapin, datahi, datalo, clockhi, clocklo);
}
} else {
// If data and clock are on the same port then we can combine setting the data and clock pins
register data_t datahi_clockhi = FastPin<DATA_PIN>::hival() | FastPin<CLOCK_PIN>::mask();
register data_t datalo_clockhi = FastPin<DATA_PIN>::loval() | FastPin<CLOCK_PIN>::mask();
register data_t datahi_clocklo = FastPin<DATA_PIN>::hival() & ~FastPin<CLOCK_PIN>::mask();
register data_t datalo_clocklo = FastPin<DATA_PIN>::loval() & ~FastPin<CLOCK_PIN>::mask();
while(len--) {
writeByte(value, datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
}
}
#endif
}
// write a block of len uint8_ts out. Need to type this better so that explicit casts into the call aren't required.
// note that this template version takes a class parameter for a per-byte modifier to the data.
template <class D> void writeBytes(register uint8_t *data, int len) {
select();
#ifdef FAST_SPI_INTERRUPTS_WRITE_PINS
uint8_t *end = data + len;
while(data != end) {
writeByte(D::adjust(*data++));
}
#else
register clock_ptr_t clockpin = FastPin<CLOCK_PIN>::port();
register data_ptr_t datapin = FastPin<DATA_PIN>::port();
if(FastPin<DATA_PIN>::port() != FastPin<CLOCK_PIN>::port()) {
// If data and clock are on different ports, then writing a bit will consist of writing the value foor
// the bit (hi or low) to the data pin port, and then two writes to the clock port to strobe the clock line
register data_t datahi = FastPin<DATA_PIN>::hival();
register data_t datalo = FastPin<DATA_PIN>::loval();
register clock_t clockhi = FastPin<CLOCK_PIN>::hival();
register clock_t clocklo = FastPin<CLOCK_PIN>::loval();
uint8_t *end = data + len;
while(data != end) {
writeByte(D::adjust(*data++), clockpin, datapin, datahi, datalo, clockhi, clocklo);
}
} else {
// FastPin<CLOCK_PIN>::hi();
// If data and clock are on the same port then we can combine setting the data and clock pins
register data_t datahi_clockhi = FastPin<DATA_PIN>::hival() | FastPin<CLOCK_PIN>::mask();
register data_t datalo_clockhi = FastPin<DATA_PIN>::loval() | FastPin<CLOCK_PIN>::mask();
register data_t datahi_clocklo = FastPin<DATA_PIN>::hival() & ~FastPin<CLOCK_PIN>::mask();
register data_t datalo_clocklo = FastPin<DATA_PIN>::loval() & ~FastPin<CLOCK_PIN>::mask();
uint8_t *end = data + len;
while(data != end) {
writeByte(D::adjust(*data++), datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
}
// FastPin<CLOCK_PIN>::lo();
}
#endif
D::postBlock(len);
release();
}
// default version of writing a block of data out to the SPI port, with no data modifications being made
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning of each grouping, as well as a class specifying a per
// byte of data modification to be made. (See DATA_NOP above)
template <uint8_t SKIP, class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
select();
#ifdef FAST_SPI_INTERRUPTS_WRITE_PINS
// If interrupts or other things may be generating output while we're working on things, then we need
// to use this block
uint8_t *end = data + len;
while(data != end) {
if(SKIP & FLAG_START_BIT) {
writeBit<0>(1);
}
writeByte(D::adjust(data[SPI_B0], scale));
writeByte(D::adjust(data[SPI_B1], scale));
writeByte(D::adjust(data[SPI_B2], scale));
data += SPI_ADVANCE;
}
#else
// If we can guaruntee that no one else will be writing data while we are running (namely, changing the values of the PORT/PDOR pins)
// then we can use a bunch of optimizations in here
register data_ptr_t datapin = FastPin<DATA_PIN>::port();
if(FastPin<DATA_PIN>::port() != FastPin<CLOCK_PIN>::port()) {
register clock_ptr_t clockpin = FastPin<CLOCK_PIN>::port();
// If data and clock are on different ports, then writing a bit will consist of writing the value foor
// the bit (hi or low) to the data pin port, and then two writes to the clock port to strobe the clock line
register data_t datahi = FastPin<DATA_PIN>::hival();
register data_t datalo = FastPin<DATA_PIN>::loval();
register clock_t clockhi = FastPin<CLOCK_PIN>::hival();
register clock_t clocklo = FastPin<CLOCK_PIN>::loval();
uint8_t *end = data + len;
while(data != end) {
if(SKIP & FLAG_START_BIT) {
writeBit<0>(1, clockpin, datapin, datahi, datalo, clockhi, clocklo);
}
writeByte(D::adjust(data[SPI_B0], scale), clockpin, datapin, datahi, datalo, clockhi, clocklo);
writeByte(D::adjust(data[SPI_B1], scale), clockpin, datapin, datahi, datalo, clockhi, clocklo);
writeByte(D::adjust(data[SPI_B2], scale), clockpin, datapin, datahi, datalo, clockhi, clocklo);
data += SPI_ADVANCE;
}
} else {
// If data and clock are on the same port then we can combine setting the data and clock pins
register data_t datahi_clockhi = FastPin<DATA_PIN>::hival() | FastPin<CLOCK_PIN>::mask();
register data_t datalo_clockhi = FastPin<DATA_PIN>::loval() | FastPin<CLOCK_PIN>::mask();
register data_t datahi_clocklo = FastPin<DATA_PIN>::hival() & ~FastPin<CLOCK_PIN>::mask();
register data_t datalo_clocklo = FastPin<DATA_PIN>::loval() & ~FastPin<CLOCK_PIN>::mask();
uint8_t *end = data + len;
while(data != end) {
if(SKIP & FLAG_START_BIT) {
writeBit<0>(1, datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
}
writeByte(D::adjust(data[SPI_B0], scale), datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
writeByte(D::adjust(data[SPI_B1], scale), datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
writeByte(D::adjust(data[SPI_B2], scale), datapin, datahi_clockhi, datalo_clockhi, datahi_clocklo, datalo_clocklo);
data += SPI_ADVANCE;
}
}
#endif
D::postBlock(len);
release();
}
template <uint8_t SKIP, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<SKIP, DATA_NOP, RGB_ORDER>(data, len, scale);
}
template <class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, D, RGB_ORDER>(data, len, scale);
}
template <EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB_ORDER>(data, len, scale);
}
void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB>(data, len, scale);
}
};
#endif