forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clockless.h
283 lines (243 loc) · 9.27 KB
/
clockless.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#ifndef __INC_CLOCKLESS_H
#define __INC_CLOCKLESS_H
#include "controller.h"
#include "lib8tion.h"
#include "delay.h"
#include <avr/interrupt.h> // for cli/se definitions
// Scaling macro choice
#if defined(LIB8_ATTINY)
# define INLINE_SCALE(B, SCALE) delaycycles<3>()
# warning "No hardware multiply, inline brightness scaling disabled"
#else
# define INLINE_SCALE(B, SCALE) B = scale8_LEAVING_R1_DIRTY(B, SCALE)
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Base template for clockless controllers. These controllers have 3 control points in their cycle for each bit. The first point
// is where the line is raised hi. The second point is where the line is dropped low for a zero. The third point is where the
// line is dropped low for a one. T1, T2, and T3 correspond to the timings for those three in clock cycles.
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int WAIT_TIME = 50>
class ClocklessController : public CLEDController {
typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<DATA_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
FastPin<DATA_PIN>::setOutput();
mPinMask = FastPin<DATA_PIN>::mask();
mPort = FastPin<DATA_PIN>::port();
}
virtual void clearLeds(int nLeds) {
showColor(CRGB(0, 0, 0), nLeds, 0);
}
// set all the leds on the controller to a given color
virtual void showColor(const struct CRGB & data, int nLeds, uint8_t scale = 255) {
mWait.wait();
cli();
showRGBInternal<0, false>(nLeds, scale, (const byte*)&data);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS((long)nLeds * 24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
sei();
mWait.mark();
}
virtual void show(const struct CRGB *rgbdata, int nLeds, uint8_t scale = 255) {
mWait.wait();
cli();
showRGBInternal<0, true>(nLeds, scale, (const byte*)rgbdata);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS((long)nLeds * 24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
sei();
mWait.mark();
}
#ifdef SUPPORT_ARGB
virtual void show(const struct CARGB *rgbdata, int nLeds, uint8_t scale = 255) {
mWait.wait();
cli();
showRGBInternal<1, true>(nLeds, scale, (const byte*)rgbdata);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS((long)nLeds * 24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
sei();
mWait.mark();
}
#endif
#if defined(__MK20DX128__)
inline static void write8Bits(register data_ptr_t port, register data_t hi, register data_t lo, register uint32_t & b) __attribute__ ((always_inline)) {
// TODO: hand rig asm version of this method. The timings are based on adjusting/studying GCC compiler ouptut. This
// will bite me in the ass at some point, I know it.
for(register uint32_t i = 7; i > 0; i--) {
FastPin<DATA_PIN>::fastset(port, hi);
delaycycles<T1 - 5>(); // 5 cycles - 2 store, 1 and, 1 test, 1 if
if(b & 0x80) { FastPin<DATA_PIN>::fastset(port, hi); } else { FastPin<DATA_PIN>::fastset(port, lo); }
b <<= 1;
delaycycles<T2 - 2>(); // 2 cycles, 1 store/skip, 1 shift
FastPin<DATA_PIN>::fastset(port, lo);
delaycycles<T3 - 5>(); // 3 cycles, 2 store, 1 sub, 1 branch backwards
}
// delay an extra cycle because falling out of the loop takes on less cycle than looping around
delaycycles<1>();
FastPin<DATA_PIN>::fastset(port, hi);
delaycycles<T1 - 6>();
if(b & 0x80) { FastPin<DATA_PIN>::fastset(port, hi); } else { FastPin<DATA_PIN>::fastset(port, lo); }
delaycycles<T2 - 2>(); // 4 cycles, 2 store, store/skip
FastPin<DATA_PIN>::fastset(port, lo);
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
template<int SKIP, bool ADVANCE> static void showRGBInternal(register int nLeds, register uint8_t scale, register const byte *rgbdata) {
register byte *data = (byte*)rgbdata;
register data_t mask = FastPin<DATA_PIN>::mask();
register data_ptr_t port = FastPin<DATA_PIN>::port();
nLeds *= (3 + SKIP);
register uint8_t *end = data + nLeds;
register data_t hi = *port | mask;
register data_t lo = *port & ~mask;
*port = lo;
register uint32_t b;
b = ((ADVANCE)?data:rgbdata)[SKIP + RGB_BYTE0(RGB_ORDER)];
b = scale8(b, scale);
while(data < end) {
// Write first byte, read next byte
write8Bits(port, hi, lo, b);
b = ((ADVANCE)?data:rgbdata)[SKIP + RGB_BYTE1(RGB_ORDER)];
INLINE_SCALE(b, scale);
delaycycles<T3 - 5>(); // 1 store, 2 load, 1 mul, 1 shift,
// Write second byte
write8Bits(port, hi, lo, b);
b = ((ADVANCE)?data:rgbdata)[SKIP + RGB_BYTE2(RGB_ORDER)];
INLINE_SCALE(b, scale);
data += 3 + SKIP;
if((RGB_ORDER & 0070) == 0) {
delaycycles<T3 - 6>(); // 1 store, 2 load, 1 mul, 1 shift, 1 adds if BRG or GRB
} else {
delaycycles<T3 - 5>(); // 1 store, 2 load, 1 mul, 1 shift,
}
// Write third byte
write8Bits(port, hi, lo, b);
b = ((ADVANCE)?data:rgbdata)[SKIP + RGB_BYTE0(RGB_ORDER)];
INLINE_SCALE(b, scale);
delaycycles<T3 - 11>(); // 1 store, 2 load (with increment), 1 mul, 1 shift, 1 cmp, 1 branch backwards, 1 movim
};
}
#else // AVR loop/implementation
template <int N, int ADJ>inline static void bitSetLast(register data_ptr_t port, register data_t hi, register data_t lo, register uint8_t b) {
// First cycle
FastPin<DATA_PIN>::fastset(port, hi); // 1 clock cycle if using out, 2 otherwise
delaycycles<T1 - (_CYCLES(DATA_PIN))>(); // 1st cycle length minus 1 clock for out, 1 clock for sbrs
__asm__ __volatile__ ("sbrs %0, %1" :: "r" (b), "M" (N) :); // 1 clock for check (+1 if skipping, next op is also 1 clock)
// Second cycle
FastPin<DATA_PIN>::fastset(port, lo); // 1/2 clock cycle if using out
delaycycles<T2 - (_CYCLES(DATA_PIN))>(); // 2nd cycle length minus 1/2 clock for out
// Third cycle
FastPin<DATA_PIN>::fastset(port, lo); // 1/2 clock cycle if using out
delaycycles<T3 - (_CYCLES(DATA_PIN) + ADJ)>(); // 3rd cycle length minus the passed in adjustment
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
template<int SKIP, bool ADVANCE> static void showRGBInternal(register int nLeds, register uint8_t scale, register const byte *rgbdata) {
register byte *data = (byte*)rgbdata;
register data_t mask = FastPin<DATA_PIN>::mask();
register data_ptr_t port = FastPin<DATA_PIN>::port();
nLeds *= (3 + SKIP);
register uint8_t *end = data + nLeds;
register data_t hi = *port | mask;
register data_t lo = *port & ~mask;
*port = lo;
#if 0
register uint8_t b = *data++;
while(data <= end) {
bitSetFast<7>(port, hi, lo, b);
bitSetFast<6>(port, hi, lo, b);
bitSetFast<5>(port, hi, lo, b);
bitSetFast<4>(port, hi, lo, b);
bitSetFast<3>(port, hi, lo, b);
// Leave an extra 2 clocks for the next byte load
bitSetLast<2, 2>(port, hi, lo, b);
register uint8_t next = *data++;
// Leave an extra 4 clocks for the scale
bitSetLast<1, 4>(port, hi, lo, b);
next = scale8(next, scale);
bitSetLast<0, END_OF_LOOP>(port, hi, lo, b);
b = next;
}
#else
register uint8_t b;
if(ADVANCE) {
b = data[SKIP + RGB_BYTE0(RGB_ORDER)];
} else {
b = rgbdata[SKIP + RGB_BYTE0(RGB_ORDER)];
}
b = scale8_LEAVING_R1_DIRTY(b, scale);
register uint8_t c;
register uint8_t d;
while(data < end) {
for(register byte x=5; x; x--) {
bitSetLast<7, 4>(port, hi, lo, b);
b <<= 1;
}
delaycycles<1>();
bitSetLast<7, 1>(port, hi, lo, b);
delaycycles<1>();
// Leave an extra 4 clocks for the load/scale
bitSetLast<6, 6>(port, hi, lo, b);
if(ADVANCE) {
c = data[SKIP + RGB_BYTE1(RGB_ORDER)];
} else {
c = rgbdata[SKIP + RGB_BYTE1(RGB_ORDER)];
delaycycles<1>();
}
INLINE_SCALE(c, scale);
bitSetLast<5, 1>(port, hi, lo, b);
for(register byte x=5; x; x--) {
bitSetLast<7, 4>(port, hi, lo, c);
c <<= 1;
}
delaycycles<1>();
bitSetLast<7, 1>(port, hi, lo, c);
delaycycles<1>();
// Leave an extra 4 clocks for the load/scale
bitSetLast<6, 6>(port, hi, lo, c);
if(ADVANCE) {
d = data[SKIP + RGB_BYTE2(RGB_ORDER)];
} else {
d = rgbdata[SKIP + RGB_BYTE2(RGB_ORDER)];
delaycycles<1>();
}
INLINE_SCALE(d, scale);
bitSetLast<5, 1>(port, hi, lo, c);
for(register byte x=5; x; x--) {
bitSetLast<7, 4>(port, hi, lo, d);
d <<= 1;
}
delaycycles<1>();
// Leave an extra clock for the data pointer advance
bitSetLast<7, 2>(port, hi, lo, d);
data += (SKIP + 3);
// Leave an extra 4 clocks for the load/scale
bitSetLast<6, 6>(port, hi, lo, d);
if(ADVANCE) {
b = data[SKIP + RGB_BYTE0(RGB_ORDER)];
} else {
b = rgbdata[SKIP + RGB_BYTE0(RGB_ORDER)];
delaycycles<1>();
}
INLINE_SCALE(b, scale);
bitSetLast<5, 6>(port, hi, lo, d);
}
cleanup_R1();
#endif
}
#endif
#ifdef SUPPORT_ARGB
virtual void showARGB(struct CARGB *data, int nLeds) {
// TODO: IMPLEMENTME
}
#endif
};
#endif