-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstarcoder_gen.py
122 lines (102 loc) · 3.54 KB
/
starcoder_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
Accelerate the generation of StarCoder programs using VLLM.
Usage:
python starcoder_vllm.py --hf-home={} --hf-cache={} --prompt-dir={} \
--output-dir={} --n={} --max-tokens={} --split-size={} --log-file={}
"""
import argparse
import time
import os
from pathlib import Path
import logging
from pprint import pprint
import random
from vllm import LLM, SamplingParams
EOF_STRINGS = [
"<|endoftext|>",
"###",
"__output__ =",
"if __name__",
'"""',
"'''",
"# Model ends",
"# LLVM IR ends",
"# C++ Code ends",
]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt-dir", type=str, default="prompts")
parser.add_argument(
"--output-dir",
type=str,
default="generated-outputs",
)
parser.add_argument(
"--hf-home",
type=str,
default="/JawTitan/huggingface/hub",
help="HuggingFace home dir",
)
parser.add_argument(
"--hf-cache",
type=str,
default=None,
help="HuggingFace cache dir",
)
parser.add_argument("-n", "--num", type=int, default=10)
parser.add_argument("--max-tokens", type=int, default=4096)
parser.add_argument("--split-size", type=int, default=20)
parser.add_argument("--log-file", type=str, default="whitefox-llm-gen.log")
parser.add_argument("--model", type=str, default="ise-uiuc/Magicoder-S-DS-6.7B")
args = parser.parse_args()
pprint(args)
if args.hf_home is not None:
os.environ["HF_HOME"] = os.environ.get("HF_HOME", args.hf_home)
if args.hf_cache is not None:
HF_CACHE_DIR = args.hf_cache
else:
HF_CACHE_DIR = os.environ.get("HF_HOME", "~/.cache/huggingface")
logging.basicConfig(level=logging.INFO, filename=args.log_file)
prompt_dir = Path(args.prompt_dir)
output_dir = Path(args.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
llm = LLM(
model=args.model,
dtype="bfloat16",
download_dir=HF_CACHE_DIR,
max_model_len=16000,
swap_space=20,
)
prompts = []
filenames = []
for prompt_file in prompt_dir.glob("*.txt"):
with open(prompt_file) as f:
prompts.append(f.read())
filenames.append(prompt_file.stem)
logging.info(f"Number of prompts: {len(prompts)}")
print(f"Number of prompts: {len(prompts)}")
n = args.num
max_tokens = args.max_tokens
split_size = args.split_size
unit_num = 20
for k in range(0, len(prompts), split_size):
for j in range(0, n, unit_num):
cur_num = min(unit_num, n - j)
st_time = time.time()
end_idx = min(k + split_size, len(prompts))
sampling_params = SamplingParams(
n=cur_num, temperature=1.0, top_p=1.0, max_tokens=max_tokens, stop=EOF_STRINGS, seed=random.randint(0, 10000)
)
outputs = llm.generate(prompts[k:end_idx], sampling_params)
used_time = time.time() - st_time
logging.info(f"Time taken: {used_time} seconds")
for i, output in enumerate(outputs):
filename = filenames[i + k]
output_file_dir = output_dir / filename
output_file_dir.mkdir(exist_ok=True, parents=True)
for r, text in enumerate(output.outputs):
generated_text = text.text
(output_file_dir / f"{filename}-{j+r}.py").write_text(generated_text)
(output_dir / f"generated-{k}-{j}-time.log").write_text(str(used_time))
if __name__ == "__main__":
main()