-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbert_utils.py
54 lines (48 loc) · 2.16 KB
/
bert_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import pandas as pd
def get_model_map(json_path, return_data_frame=False):
"""
Gets the model map from the speified json path and loads it into a python dictionary. If the
data frame option is enabled, it will also return the list of models in a pandas data frame
with column headers so that it can be used to display in a notebook.
"""
with open(json_path) as json_file:
tfhub_model_map = json.load(json_file)
if return_data_frame:
# Generate list of model names and URL links to TF Hub based on the model map
model_options = [[i,
tfhub_model_map[i]["num_hidden_layers"],
tfhub_model_map[i]["hidden_size"],
tfhub_model_map[i]["num_attention_heads"],
"<a href=\"{0}\" target=\"_blank\">{0}</a>".format(
tfhub_model_map[i]["bert_encoder"])]
for i in tfhub_model_map.keys()]
if len(model_options) == 0:
print("Warning: No models were found in the json file:", json_path)
pd.set_option('display.max_colwidth', None)
models_df = pd.DataFrame(model_options,
columns=["Model",
"Hidden layers",
"Hidden size",
"Attention heads",
"TF Hub BERT encoder URL"])
return tfhub_model_map, models_df
else:
return tfhub_model_map