Skip to content

Releases: intel/ai-reference-models

Model Zoo for Intel® Architecture v2.11.0

28 Apr 23:16
Compare
Choose a tag to compare

Supported Frameworks

New models

  • New precisions FP16 and BFloat16 for different workloads

New features

Bug fixes:

Supported Configurations

Intel Model Zoo v2.11.0 is validated on the following environment:

  • Ubuntu 22.04 LTS
  • Ubuntu 20.04 LTS
  • Windows 11
  • Windows Subsystem for Linux 2 (WSL2)
  • Python 3.8, 3.9

Model Zoo for Intel® Architecture v2.7.0

14 Apr 15:35
Compare
Choose a tag to compare

Supported Frameworks

  • TensorFlow v2.8.0
  • PyTorch v1.11.0 and IPEX v1.11.0

New models

  • N/A

New features

Bug fixes:

Supported Configurations

Intel Model Zoo 2.7.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Model Zoo for Intel® Architecture v2.6.1

31 Jan 18:43
Compare
Choose a tag to compare

Features and bug fixes

Supported Configurations

Intel Model Zoo 2.6.1 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Model Zoo for Intel® Architecture v2.6.0

17 Dec 23:00
Compare
Choose a tag to compare

TensorFlow Framework

  • Support for TensorFlow v2.7.0

New TensorFlow models

  • N/A

Other features and bug fixes for TensorFlow models

  • Updates to only use docker --privileged when required and check --cpuset
    • Except for BERT Large and Wide and Deep models
  • Updated the ImageNet download link
  • Fix platform_util.py for systems with only one socket or subset of cores within a socket
  • Replace USE_DAAL4PY_SKLEARN env var with patch_sklearn
  • Add error handling for when a frozen graph isn't passed for BERT large FP32 inference*

PyTorch Framework

  • Support for PyTorch v1.10.0 and IPEX v1.10.0

New PyTorch models

  • GoogLeNet Inference(FP32, BFloat16**)
  • Inception v3 Inference(FP32, BFloat16**)
  • MNASNet 0.5 Inference(FP32, BFloat16**)
  • MNASNet 1.0 Inference(FP32, BFloat16**)
  • ResNet 50 Inference(Int8)
  • ResNet 50 Training(FP32, BFloat16**)
  • ResNet 101 Inference(FP32, BFloat16**)
  • ResNet 152 Inference(FP32, BFloat16**)
  • ResNext 32x4d Inference(FP32, BFloat16**)
  • ResNext 32x16d Inference(FP32, Int8, BFloat16**)
  • VGG-11 Inference(FP32, BFloat16**)
  • VGG-11 with batch normalization Inference(FP32, BFloat16**)
  • Wide ResNet-50-2 Inference(FP32, BFloat16**)
  • Wide ResNet-101-2 Inference(FP32, BFloat16**)
  • BERT base Inference(FP32, BFloat16**)
  • BERT large Inference(FP32, Int8, BFloat16**)
  • BERT large Training(FP32, BFloat16**)
  • DistilBERT base Inference(FP32, BFloat16**)
  • RNN-T Inference(FP32, BFloat16**)
  • RNN-T Training(FP32, BFloat16**)
  • RoBERTa base Inference(FP32, BFloat16**)
  • Faster R-CNN ResNet50 FPN Inference(FP32
  • Mask R-CNN Inference(FP32, BFloat16**)
  • Mask R-CNN Training(FP32, BFloat16**)
  • Mask R-CNN ResNet50 FPN Inference(FP32)
  • RetinaNet ResNet-50 FPN Inference(FP32)
  • SSD-ResNet34 Inference(FP32, Int8, BFloat16**)
  • SSD-ResNet34 Training(FP32, BFloat16**)
  • DLRM Inference(FP32, Int8, BFloat16**)
  • DLRM Training(FP32)

Other features and bug fixes for PyTorch models

  • DLRM and ResNet 50 documentation updates

Supported Configurations

Intel Model Zoo 2.6.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Intel Model Zoo v2.5.0

21 Oct 18:33
Compare
Choose a tag to compare

New Functionality

New Models

  • ML-Perf Transformer-LT Training (FP32 and BFloat16)
  • ML-Perf Transformer-LT Inference (FP32, BFloat16 and INT8)
  • ML-Perf 3D-Unet Inference (FP32, BFloat16 and INT8)
  • DIEN Training (FP32)
  • DIEN Inference (FP32 and BFloat16)

Other features and bug fixes

  • Added IPython Notebook with BERT classifier fine tuning using IMDb
  • Documentation for creating an LPOT Container with Intel® Optimizations for TensorFlow
  • Advanced documentation for wide deep large ds fp32 training
  • Increase Unit testing coverage

DL Frameworks (TensorFlow)

  • Support for TensorFlow v2.6.0 and TensorFlow Serving v2.6.0

DL Frameworks (PyTorch)

  • Support for PyTorch v1.9.0 and IPEX v1.9.0

Supported Configurations

Intel Model Zoo 2.5.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8
  • Docker Server v19+
  • Docker Client v18+

v2.4.0

26 Jul 23:00
Compare
Choose a tag to compare

New Functionality

DL Frameworks (TensorFlow)

  • Support for TensorFlow v2.5.0 and TensorFlow Serving v2.5.1

Supported Configurations

Intel Model Zoo 2.4 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8
  • Docker Server v19+
  • Docker Client v18+