diff --git a/docs/hotrod-clients/cpp/docs/9.1.0.Final/asciidoc/titles/cpp_client.html b/docs/hotrod-clients/cpp/docs/9.1.0.Final/asciidoc/titles/cpp_client.html index 871e389310..31c30e0f99 100644 --- a/docs/hotrod-clients/cpp/docs/9.1.0.Final/asciidoc/titles/cpp_client.html +++ b/docs/hotrod-clients/cpp/docs/9.1.0.Final/asciidoc/titles/cpp_client.html @@ -31,7 +31,7 @@ -
Compiling Protobuf SchemaConfiguring the {hr_cpp} clientInstalling the {hr_cpp} clientBackup Across Data CentersBoost Application PerformancePersistent Cache StoresContainer ImageContainer ImageCommunityComponentsContainer ImageContainer ImageContributeDependency CoordinatesJava Client CoordinatesDependency CoordinatesDocumentation ArchiveGuidesInfinispan ArchiveDownloadsExperimentsFeaturesGet StartedAchieve High Availability and ElasticityHot Rod Clients.NET Hot Rod ClientThe Weather AppInfinispanIntegrationsIntroduction to InfinispanContainer ImageContainer ImageCompiling Protobuf schema on {rhel_long}Compiling Protobuf schema on {win_long}Installing {hr_cpp} clients on {rhel_long}Installing {hr_cpp} clients on {win_long}Configuration and Remote Cache Manager APIsC{plusplus} compiler requirementsReferencesRelease NotesRoadmapThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppTutorialsUse CasesVideosdata gridsannouncementinterviewdata gridsjcloudsec2s3awsjcloudsalgorithmsevictionconcurrencydata structures asynchronousfutureAPIrelease asynchronouscreativewallpapersyntax highlightingbloggeralphaidetestingJUGspresentationsjbossworldtransactionsbenchmarksdeadlock detectioncache storesconfigurationbuddy replicationpartitioningdistributionbetapodcastrestserverjboss cachecomparisongigaspacesdevoxxjboss cachelucenehibernatehibernate searchindexquerydevoxxcommunitysecond level cache provider release candidate release candidateuser guidedocumentationmonitoringdemovideojoprjboss asylumlocal modeehcachecloud storagehotrodmemcachedvideosbenchmarkfinalconferencejudconradegastwebsocketswebsocketamazonjgroupsjudconradegastdzone refcard recruitred hatJavaOneconferences data-as-a-serviceinfinispan data-as-a-servicedaasalphabetaSCMgitgithub meetupjboss as 5as5communityarchetypemavenradarguncache benchmark frameworkdistributed executorsbugfixmap reduce jcppython jcpjsr 107standardsmarshallingvirtual nodesexternalizersinternationalizationlogginglock stripingjsr 347colocation productjpasynchronizationhibernate ogmAPIgroupingroadmapjtadistributed queriescdirehashingstate transferlockingperformancetransactions asymmetric clustersatomic mapseventeventcdicustom commandscpumemoryindiaradargunuser groupsNoSQLgarbage collection jdghotrodgsoc databasec3p0as7cache storetomcatnetty jdgpaid supportreplicationfine grainedcommand line interfacedata entryshellclihbaseberkeleydbcsharpinfinispanbookversioningxsdflagsxsitecross site replicationpresentationshackergartenoverheadas7modulesdeploymentcodemotionjcacheperformanceremoteequivalenceinteroperabilityOpen SourceLicenseLGPLasl2cachestoremongodbloaderjpastore by referencefaqstore by valueprotostreamstatisticspersistenceleveldblistenersstoresiteremote queryuneven loadprotostreamProtobufembedded queryInfinispan QueryDSLquick startcpp-clientlistenersosgiLicense securityremote eventssplit brainpartition handlingavailabilityreleaasecep springdotnet-clientfailovercertificationstablenear cachingdomain modeindexingannotationsinfoqatomic objectsdockeropenshiftkubernetespaasvagrantscriptinggetAllputAllbeervotecodename grouping and aggregationhqlspark functionalintroductionlambda functional java 8streamsredisyarnhadoopflinkjavascriptnashornJUGswildflyconsolesnowcampvoxxedjbugcassandrajs-clientconsoleinfinispan 8geeconc++nodejsdevnationdockerc++affinity springcomposejdbcoracleoff-heapJP-QLhibernate searchfull-textlanguagestorage8.1.0c++dataspring boot securitynode.jshealthmigrationexamplearchetypesgkegooglenosqlunitkubernetesminor release release 8.2 9.0 finalconfigurationscattered cachecountermulti-tenancy workshoprocksdbIcklerest queryclustered cache configurationclustered countersbeta releaseclustered locks workshopvert.xreactivepush apireactstreams clustering replication queueminor releasejcacheoff-heaprest queryJSONiterationrubymachttp/2vert.x chatzulipremote querysegmenteddata containerkafkaopenshiftminishiftminikubespring-sessionoperatorcloudbuttonquarkusgraalvmnativesubstratevmpublic speakinggreach confbreizh campvoxxed days milanodev-previewmanagementadministrationhot rodanchored keysdevelopmenttutoriallearningpresentationnon-blockingembeddedspring-sessionhttpsessioncontainersredhatdatagridcross site replication.Net Coreclientc++node.jslithopslistenercluster failovercrucialdsoschemastartupopentelemetrytracingmultimapsearchvectorknnembeddingsrbacauthenticationkeycloakuse caserespjavadevoxxfrscoreBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlog
+
Compiling Protobuf SchemaConfiguring the {hr_cpp} clientInstalling the {hr_cpp} clientBackup Across Data CentersBoost Application PerformancePersistent Cache StoresContainer ImageContainer ImageCommunityComponentsContainer ImageContainer ImageContributeDependency CoordinatesJava Client CoordinatesDependency CoordinatesDocumentation ArchiveGuidesInfinispan ArchiveDownloadsExperimentsFeaturesGet StartedAchieve High Availability and ElasticityHot Rod Clients.NET Hot Rod ClientThe Weather AppInfinispanIntegrationsIntroduction to InfinispanContainer ImageContainer ImageCompiling Protobuf schema on {rhel_long}Compiling Protobuf schema on {win_long}Installing {hr_cpp} clients on {rhel_long}Installing {hr_cpp} clients on {win_long}Configuration and Remote Cache Manager APIsC{plusplus} compiler requirementsReferencesRelease NotesReplace Memcached with InfinispanReplace Redis with InfinispanRoadmapSide-Caching with InfinispanThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppThe Weather AppTutorialsUse CasesVideosdata gridsannouncementinterviewdata gridsjcloudsec2s3awsjcloudsalgorithmsevictionconcurrencydata structures asynchronousfutureAPIrelease asynchronouscreativewallpapersyntax highlightingbloggeralphaidetestingJUGspresentationsjbossworldtransactionsbenchmarksdeadlock detectioncache storesconfigurationbuddy replicationpartitioningdistributionbetapodcastrestserverjboss cachecomparisongigaspacesdevoxxjboss cachelucenehibernatehibernate searchindexquerydevoxxcommunitysecond level cache provider release candidate release candidateuser guidedocumentationmonitoringdemovideojoprjboss asylumlocal modeehcachecloud storagehotrodmemcachedvideosbenchmarkfinalconferencejudconradegastwebsocketswebsocketamazonjgroupsjudconradegastdzone refcard recruitred hatJavaOneconferences data-as-a-serviceinfinispan data-as-a-servicedaasalphabetaSCMgitgithub meetupjboss as 5as5communityarchetypemavenradarguncache benchmark frameworkdistributed executorsbugfixmap reduce jcppython jcpjsr 107standardsmarshallingvirtual nodesexternalizersinternationalizationlogginglock stripingjsr 347colocation productjpasynchronizationhibernate ogmAPIgroupingroadmapjtadistributed queriescdirehashingstate transferlockingperformancetransactions asymmetric clustersatomic mapseventeventcdicustom commandscpumemoryindiaradargunuser groupsNoSQLgarbage collection jdghotrodgsoc databasec3p0as7cache storetomcatnetty jdgpaid supportreplicationfine grainedcommand line interfacedata entryshellclihbaseberkeleydbcsharpinfinispanbookversioningxsdflagsxsitecross site replicationpresentationshackergartenoverheadas7modulesdeploymentcodemotionjcacheperformanceremoteequivalenceinteroperabilityOpen SourceLicenseLGPLasl2cachestoremongodbloaderjpastore by referencefaqstore by valueprotostreamstatisticspersistenceleveldblistenersstoresiteremote queryuneven loadprotostreamProtobufembedded queryInfinispan QueryDSLquick startcpp-clientlistenersosgiLicense securityremote eventssplit brainpartition handlingavailabilityreleaasecep springdotnet-clientfailovercertificationstablenear cachingdomain modeindexingannotationsinfoqatomic objectsdockeropenshiftkubernetespaasvagrantscriptinggetAllputAllbeervotecodename grouping and aggregationhqlspark functionalintroductionlambda functional java 8streamsredisyarnhadoopflinkjavascriptnashornJUGswildflyconsolesnowcampvoxxedjbugcassandrajs-clientconsoleinfinispan 8geeconc++nodejsdevnationdockerc++affinity springcomposejdbcoracleoff-heapJP-QLhibernate searchfull-textlanguagestorage8.1.0c++dataspring boot securitynode.jshealthmigrationexamplearchetypesgkegooglenosqlunitkubernetesminor release release 8.2 9.0 finalconfigurationscattered cachecountermulti-tenancy workshoprocksdbIcklerest queryclustered cache configurationclustered countersbeta releaseclustered locks workshopvert.xreactivepush apireactstreams clustering replication queueminor releasejcacheoff-heaprest queryJSONiterationrubymachttp/2vert.x chatzulipremote querysegmenteddata containerkafkaopenshiftminishiftminikubespring-sessionoperatorcloudbuttonquarkusgraalvmnativesubstratevmpublic speakinggreach confbreizh campvoxxed days milanodev-previewmanagementadministrationhot rodanchored keysdevelopmenttutoriallearningpresentationnon-blockingembeddedspring-sessionhttpsessioncontainersredhatdatagridcross site replication.Net Coreclientc++node.jslithopslistenercluster failovercrucialdsoschemastartupopentelemetrytracingmultimapsearchvectorknnembeddingsrbacauthenticationkeycloakuse caserespjavadevoxxfrscoreBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlogBlog
diff --git a/feed.xml b/feed.xml index 4a8101ffea..bf781668cc 100644 --- a/feed.xml +++ b/feed.xml @@ -1,4 +1,4 @@ -Jekyll2024-06-18T11:37:08+02:00https://infinispan.org/feed.xmlInfinispanInfinispan is a distributed in-memory key/value data store with optional schema, available under the Apache License 2.0.Infinispan 15 indexing & query news2024-06-10T02:00:00+02:002024-06-10T02:00:00+02:00https://infinispan.org/blog/2024/06/10/infinispan-15-queries +Jekyll2024-06-18T13:14:00+02:00https://infinispan.org/feed.xmlInfinispanInfinispan is a distributed in-memory key/value data store with optional schema, available under the Apache License 2.0.Infinispan 15 indexing & query news2024-06-10T02:00:00+02:002024-06-10T02:00:00+02:00https://infinispan.org/blog/2024/06/10/infinispan-15-queries

A short while back we released Infinispan 15 which delivered many improvements to the query API. This blog is an in-depth dive into some of these:

diff --git a/index.html b/index.html index a38bcb9338..9cd2c48bfa 100644 --- a/index.html +++ b/index.html @@ -154,7 +154,7 @@

Boost Application Performance

Infinispan turbocharges applications by storing data closer to processing logic, which reduces latency and increases throughput.

Available as a Java library, you simply add Infinispan to your application dependencies and then you’re ready to store data in the same memory space as the executing code.

If you want to provision a data layer that is independent of your applications, you can use Infinispan Server for remote access to data with in-memory performance. Clients are a single network hop away from data through consistent hashing techniques and can make requests over HTTP or with a custom binary TCP protocol called Hot Rod.

- Learn More + Learn More
@@ -164,7 +164,7 @@

Boost Application Performance

Achieve High Availability and Elasticity

Infinispan provides trusted open-source technology to deliver scalability to meet workload demands and reduce resource utilization. At the same time, Infinispan distributes your data across clusters so no single point of failure causes data loss.

One popular use for Infinispan is as a shared store for stateful data, such as user HTTP sessions. Applications can stay lightweight and avoid heap usage by externalizing sessions to Infinispan clusters, which act as an independent data layer.

- Learn More + Learn More
@@ -181,7 +181,7 @@

Backup Across Data Centers

Infinispan clusters running in different geographical locations can form global clusters to back up your data across sites. If sites go offline clients can immediately switch to an available cluster, making sure data center faults do not cause service interruptions.

When using the Infinispan Operator with Kubernetes environments such as Red Hat OpenShift, cross-site replication capabilities make your data ready for hybrid and multi cloud deployments.

Infinispan also guarantees data consistency when using cross-site replication, even in cases where clients make concurrent writes at different locations that use asynchronous replication. So your data is always there and always accurate, no matter where you’re running.

- Learn More + Learn More
diff --git a/scenarios/backup-across-data-centers.html b/scenarios/backup-across-data-centers.html new file mode 100644 index 0000000000..2c92cef668 --- /dev/null +++ b/scenarios/backup-across-data-centers.html @@ -0,0 +1,222 @@ + + + + + Backup Across Data Centers + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ Scenarios Backup Across Data Centers +
+
+
+ +
+
+

Backup Across Data Centers

+
+
+ +

Infinispan clusters running in different geographical locations can form global clusters to back up your data across sites. If sites go offline clients can immediately switch to an available cluster, making sure data center faults do not cause service interruptions.

+ +

When using the Infinispan Operator with Kubernetes environments such as Red Hat OpenShift, cross-site replication capabilities make your data ready for hybrid and multi cloud deployments.

+ +

Infinispan also guarantees data consistency when using cross-site replication, even in cases where clients make concurrent writes at different locations that use asynchronous replication. So your data is always there and always accurate, no matter where you’re running.

+ + +
+ + + + + + + + + + + + + + + + diff --git a/scenarios/boost-application-performance.html b/scenarios/boost-application-performance.html new file mode 100644 index 0000000000..a8917fbca0 --- /dev/null +++ b/scenarios/boost-application-performance.html @@ -0,0 +1,223 @@ + + + + + Boost Application Performance + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ Scenarios Boost Application Performance +
+
+
+ +
+
+

Boost Application Performance

+
+
+ +

Infinispan turbocharges applications by storing data closer to processing logic, which reduces latency and increases throughput.

+ +

Available as a Java library, you simply add Infinispan to your application dependencies and then you’re ready to store data in the same memory space as the executing code.

+ +

If you want to provision a data layer that is independent of your applications, you can use Infinispan Server for remote access to data with in-memory performance. Clients are a single network hop away from data through consistent hashing techniques and can make requests over HTTP or with a custom binary TCP protocol called Hot Rod.

+ + + +
+ + + + + + + + + + + + + + + + diff --git a/scenarios/high-availability-and-elasticity.html b/scenarios/high-availability-and-elasticity.html new file mode 100644 index 0000000000..f5e932142b --- /dev/null +++ b/scenarios/high-availability-and-elasticity.html @@ -0,0 +1,220 @@ + + + + + Achieve High Availability and Elasticity + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+ Scenarios Achieve High Availability and Elasticity +
+
+
+ +
+
+

Achieve High Availability and Elasticity

+
+
+ +

Infinispan provides trusted open-source technology to deliver scalability to meet workload demands and reduce resource utilization. At the same time, Infinispan distributes your data across clusters so no single point of failure causes data loss.

+ +

One popular use for Infinispan is as a shared store for stateful data, such as user HTTP sessions. Applications can stay lightweight and avoid heap usage by externalizing sessions to Infinispan clusters, which act as an independent data layer.

+ + +
+ + + + + + + + + + + + + + + + diff --git a/use-cases/index.html b/use-cases/index.html index 2471858b2b..783cdb124a 100644 --- a/use-cases/index.html +++ b/use-cases/index.html @@ -79,54 +79,22 @@

Use Cases

-

Infinispan is a highly flexible data store that optimizes application performance and reduces operational costs

+

Use Infinispan in real-world applications

+ +
+
+

Here you will find examples that show how to use Infinispan features applied to real-world use-cases.

+ + -
-
-
-
-
- -
-
-

Boost Application Performance

-

Infinispan turbocharges applications by storing data closer to processing logic, which reduces latency and increases throughput.

-

Available as a Java library, you simply add Infinispan to your application dependencies and then you’re ready to store data in the same memory space as the executing code.

-

If you want to provision a data layer that is independent of your applications, you can use Infinispan Server for remote access to data with in-memory performance. Clients are a single network hop away from data through consistent hashing techniques and can make requests over HTTP or with a custom binary TCP protocol called Hot Rod.

- Learn More -
-
-
-
-
-
-

Achieve High Availability and Elasticity

-

Infinispan provides trusted open-source technology to deliver scalability to meet workload demands and reduce resource utilization. At the same time, Infinispan distributes your data across clusters so no single point of failure causes data loss.

-

One popular use for Infinispan is as a shared store for stateful data, such as user HTTP sessions. Applications can stay lightweight and avoid heap usage by externalizing sessions to Infinispan clusters, which act as an independent data layer.

- Learn More -
-
- -
-
-
-
-
-
- -
-
-

Backup Across Data Centers

-

Infinispan clusters running in different geographical locations can form global clusters to back up your data across sites. If sites go offline clients can immediately switch to an available cluster, making sure data center faults do not cause service interruptions.

-

When using the Infinispan Operator with Kubernetes environments such as Red Hat OpenShift, cross-site replication capabilities make your data ready for hybrid and multi cloud deployments.

-

Infinispan also guarantees data consistency when using cross-site replication, even in cases where clients make concurrent writes at different locations that use asynchronous replication. So your data is always there and always accurate, no matter where you’re running.

- Learn More -
-
-
+
+
+ +
+
+

Infinispan: a better server for your Redis clients

+

Tristan walks you through how Infinispan can be used by your Redis clients and uses Redis Insight to show how to seamlessly scale up and down by adding nodes to the cluster on the fly.

+