-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdbscan.m
93 lines (77 loc) · 2.42 KB
/
dbscan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function [class, type] = dbscan(dataPath, k, Eps)
% Aimed at clustering the data with Density-Based Scan Algorithm with Noise (DBSCAN)
% -------------------------------------------------------------------------
% Input:
% dataPath - the file path of data
% k - number of objects in a neighborhood of an object
% (minimal number of objects considered as a cluster)
% Eps - neighborhood radius, if not known avoid this parameter or put []
% -------------------------------------------------------------------------
% Output:
% class - vector specifying assignment of the i-th object to certain
% cluster (m,1)
% type - vector specifying type of the i-th object
% (core: 1, border: 0, outlier: -1)
datafile=[dataPath,'/points.mat'];
load(datafile);
x = points;
[m,n]=size(x);
tic;
if nargin<3 | isempty(Eps)
[Eps] = epsilon(x, k);
end
x=[[1:m]' x];
[m, n] = size(x);
type = zeros(1,m);
no = 1;
touched = zeros(m,1);
for i = 1 : m
if touched(i) == 0
ob = x(i,:);
D = dist(ob(2:n), x(:,2:n));
index = find(D <= Eps);
if length(index) > 1 & length(index) < k+1
type(i) = 0;
class(i) = 0;
end
if length(index) == 1
type(i) = -1; %ΪʲôÊÇ-1ÄØ
class(i) = -1; %ΪʲôÊÇ-1ÄØ
touched(i) = 1;
end
if length(index) >= k+1
type(i) = 1;
class(index) = ones(length(index),1)*max(no);
while ~isempty(index)
ob = x(index(1),:);
touched(index(1)) = 1;
index(1) = [];
D = dist(ob(2:n), x(:,2:n));
i1 = find(D <= Eps);
if length(i1)>1
class(i1) = no;
if length(i1) >= k+1;
type(ob(1)) = 1;
else
type(ob(1)) = 0;
end
for i = 1 : length(i1)
if touched(i1(i)) == 0
touched(i1(i)) = 1;
index = [index i1(i)];
class(i1(i)) = no;
end
end
end
end
no = no + 1;
end
end
end
i1 = find(class == 0);
class(i1) = -1;
type(i1) = -1;
title('DBSCAN')
drawshapes(points, class, m);
toc;
end