-
Notifications
You must be signed in to change notification settings - Fork 496
/
NQueenProblem.java
171 lines (154 loc) · 5.83 KB
/
NQueenProblem.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.Iterator;
import java.util.List;
/**
* <p>This class solves the N Queens Problem.</p>
*
* <p>Once you create an object with the desired board size, you can get an iterator that lazily will create each
* possible solution is there's any. The code will create all solutions, not jut unique ones</p>
*
* <p>This way you have flexibility on how to use solutions, you can get only one or all.</p>
*
* @see <a href="https://en.wikipedia.org/wiki/Eight_queens_puzzle">N Queens Problem</a>
*/
public class NQueenProblem implements Iterable<NQueenProblem.Solution> {
private final int size;
/**
* Creates an NQueens object to solve the N Quees Problems on board of size n
*
* @param n
*/
public NQueenProblem(final int n) {
this.size = n;
}
/**
* Returns an Iterator over the solutions for this N Queens Problem.
*/
@Override
public Iterator<Solution> iterator() {
return new NQueenIterator();
}
/**
* <p>This class represents a Solution for the N Queen problem.</p>
*
* <p>Internally a solution is encoded as a list of integers. If in the index i there's integer j
* it means that one of the queens should be placed on the square (i, j)</p>
*
*/
public static class Solution {
private final List<Integer> board;
private static char QUEEN = 'Q';
private static char EMPTY_SQUARE = '.';
private static String NEW_LINE = String.format("%n"); // platform independent new line character.
public Solution(final List<Integer> board) {
this.board = board;
}
/**
* <p>Returns an String that looks like a board where '.' represents an empty square and 'Q' represents an square with a queen</p>
*/
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
for (int i = 0; i < board.size(); ++i) {
for (int j = 0; j < board.size(); ++j) {
if (board.get(i) == j) {
builder.append(QUEEN);
} else {
builder.append(EMPTY_SQUARE);
}
}
builder.append(NEW_LINE);
}
return builder.toString();
}
}
private class NQueenIterator implements Iterator<Solution> {
/**
* Queue to store the intermediate boards necessary to build all solutions.
*/
private final Deque<List<Integer>> queue;
/**
* Next solution to be returned.
*/
private Solution next;
/**
* Initializes the queue and adds an empty board to it.
*/
private NQueenIterator() {
this.queue = new ArrayDeque<>();
queue.add(new ArrayList<>(size));
}
/**
* <p>Returns true is there's one more solution.</p>
*
* <p>It uses a backtracking algorithm to check for a possible solution. It removes the last board enqueued
* and for the next empty column it tries to place a queen in every square. If that queen doesn't attack any of the already
* placed queens, it queues a board with that queen. Once it removes a board with 8 queens, it stops and returns true</p>
*/
@Override
public boolean hasNext() {
while (!queue.isEmpty()) {
List<Integer> current = queue.removeLast();
if (current.size() == size) {
this.next = new Solution(current);
return true;
}
int column = current.size();
for (int row = 0; row < size; ++row) {
if (isValid(current, column, row)) {
List<Integer> next = new ArrayList<>(current);
next.add(row);
queue.addLast(next);
}
}
}
return false;
}
@Override
public Solution next() {
return next;
}
/**
* <p>Returns true if is isValid to place a queen on the square (column, row)</p>
*
* <p>A queen can be placed if it doesn't attack any of the already placed queens: there can't be a queen
* already in the same row, and the queen can't be collinear with any other.</p>
*
* @param board a representation of the current board as explained in {@link Solution}
* @param column the column we want to test to see if a queen can be placed without attacking any existing one
* @param row the row we want to test to see if a queen can be placed without attacking any existing one
* @return true if a queen can be placed on (column, row) without attacking any queens already in board
*/
private boolean isValid(List<Integer> board, int column, int row) {
for (int j = 0; j < column; ++j) {
if (board.get(j) == row) {
return false;
}
if (areCollinear(column, j, board.get(j), row)) {
return false;
}
}
return true;
}
/**
* Verifies that the square (x, y) is not collinear with square (x1, y1)
*
* @param x
* @param y
* @param x1
* @param y1
* @return
*/
private boolean areCollinear(int x, int y, int x1, int y1) {
return Math.abs(y - x) == Math.abs(x1 - y1);
}
}
public static void main(String[] args) {
NQueenProblem queens = new NQueenProblem(5);
for (Solution s : queens) {
System.out.println(s);
}
}
}