-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdustSensorFromWeb.ino
748 lines (662 loc) · 21 KB
/
dustSensorFromWeb.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#include "PinChangeInt.h"
#include "SimpleTimer.h"
#include "SPI.h"
#include "Adafruit_GFX.h"
#include "Adafruit_ILI9341.h"
#include "Adafruit_STMPE610.h"
/* Connect the DSM501 sensor as follow
* https://www.elektronik.ropla.eu/pdf/stock/smy/dsm501.pdf
* 1 green vert - Not used
* 2 yellow jaune - Vout2 - 1 microns (PM1.0)
* 3 white blanc - Vcc
* 4 red rouge - Vout1 - 2.5 microns (PM2.5)
* 5 black noir - GND
*/
#define SENSOR_WARMMUP_TIME 1
#define DUST_SENSOR_DIGITAL_PIN_PM10 30 // DSM501 Pin 2 of DSM501 (jaune / Yellow)
#define DUST_SENSOR_DIGITAL_PIN_PM25 40 // DSM501 Pin 4 (rouge / red)
#define COUNTRY 0 // 0. France, 1. Europe, 2. USA/China
#define FRANCE 0
#define EUROPE 1
#define USA_CHINA 2
#define EXCELLENT "Excellent"
#define GOOD "Bon"
#define ACCEPTABLE "Moyen"
#define MODERATE "Mediocre"
#define HEAVY "Mauvais"
#define SEVERE "Tres mauvais"
#define HAZARDOUS "Dangereux"
#define PM25_SENSOR 0
#define PM10_SENSOR 1
/* Screen TFT from Adafruit */
// For the Adafruit shield, these are the default.
#define TFT_DC 9
#define TFT_CS 10
#define TS_INTERRUPTION 7
#define TS_BACKLIGHT 3
// The STMPE610 uses hardware SPI on the shield, and #8
#define STMPE_CS 8
#define MAX_LINES 40
#define CENTRAL_LINEWIDTH 6
#define BACKGROUND_COLOR ILI9341_WHITE
#define FOREGROUND_COLOR ILI9341_DARKGREY
#define UPPER_BG_COLOR ILI9341_NAVY
#define LOWER_BG_COLOR ILI9341_LIGHTGREY
#define EXCELLENT_COLOR ILI9341_DARKGREEN
#define GOOD_COLOR ILI9341_GREEN
#define ACCEPTABLE_COLOR ILI9341_GREENYELLOW
#define MODERATE_COLOR ILI9341_YELLOW
#define HEAVY_COLOR ILI9341_ORANGE
#define SEVERE_COLOR ILI9341_RED
#define HAZARDOUS_COLOR ILI9341_RED
// With 30s measurements, 120 gives 1h buffer
#define BUFFER_SIZE 60
// Needed for interrupts
#define NO_PORTB_PINCHANGES // to indicate that port b will not be used for pin change interrupts
#define NO_PORTJ_PINCHANGES // to indicate that port c will not be used for pin change interrupts
#define NO_PORTK_PINCHANGES // to indicate that port d will not be used for pin change interrupts
unsigned long duration;
unsigned long starttime;
unsigned long endtime;
unsigned long lowpulseoccupancy = 0;
float ratio = 0;
unsigned long SLEEP_TIME = 2 * 1000; // Sleep time between reads (in milliseconds)
unsigned long sampletime_ms = 1L * 30L * 1000L; // Durée de mesure - sample time (ms)
struct structAQI{
// variable enregistreur - recorder variables
unsigned long durationPM10;
unsigned long lowpulseoccupancyPM10 = 0;
unsigned long durationPM25;
unsigned long lowpulseoccupancyPM25 = 0;
unsigned long starttime;
unsigned long endtime;
// Sensor AQI data
float concentrationPM25 = 0;
float concentrationPM10 = 0;
int AqiPM10 = -1;
int AqiPM25 = -1;
// Indicateurs AQI - AQI display
int AQI = 0;
String AqiString = "";
int AqiColor = 0;
};
struct structAQI AQI;
struct structAQI lastAQIs[BUFFER_SIZE];
unsigned long measurementNumber = 0;
int AQIAvg = 0;
SimpleTimer timer;
Adafruit_STMPE610 ts = Adafruit_STMPE610(STMPE_CS);
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
int x1, y1, x2, y2, w, h;
unsigned long screenLine = 0;
boolean screenBacklight = true;
void updateAQILevel(){
AQI.AQI = (AQI.AqiPM10 > AQI.AqiPM25) ? AQI.AqiPM10 : AQI.AqiPM25;
}
void updateAQI() {
// Actualise les mesures - update measurements
AQI.endtime = millis();
float ratio = (AQI.lowpulseoccupancyPM10) / (sampletime_ms * 10.0);
float concentration = 1.1 * pow( ratio, 3) - 3.8 * pow(ratio, 2) + 520 * ratio + 0.62; // using spec sheet curve
if ( sampletime_ms < 3600000 ) { concentration = concentration * ( sampletime_ms / 3600000.0 ); }
AQI.lowpulseoccupancyPM10 = 0;
AQI.concentrationPM10 = concentration;
ratio = (AQI.lowpulseoccupancyPM25) / (sampletime_ms * 10.0);
concentration = 1.1 * pow( ratio, 3) - 3.8 * pow(ratio, 2) + 520 * ratio + 0.62;
if ( sampletime_ms < 3600000 ) { concentration = concentration * ( sampletime_ms / 3600000.0 ); }
AQI.lowpulseoccupancyPM25 = 0;
AQI.concentrationPM25 = concentration;
Serial.print("Concentrations => PM2.5: "); Serial.print(AQI.concentrationPM25); Serial.print(" | PM10: "); Serial.println(AQI.concentrationPM10);
AQI.starttime = millis();
// Actualise l'AQI de chaque capteur - update AQI for each sensor
if ( COUNTRY == FRANCE ) {
// France
AQI.AqiPM25 = getATMO( PM25_SENSOR, AQI.concentrationPM25 );
AQI.AqiPM10 = getATMO( PM10_SENSOR, AQI.concentrationPM10 );
} else if ( COUNTRY == EUROPE ) {
// Europe
AQI.AqiPM25 = getACQI( PM25_SENSOR, AQI.concentrationPM25 );
AQI.AqiPM10 = getACQI( PM10_SENSOR, AQI.concentrationPM10 );
} else {
// USA / China
AQI.AqiPM25 = getAQI( PM25_SENSOR, AQI.concentrationPM25 );
AQI.AqiPM10 = getAQI( PM10_SENSOR, AQI.concentrationPM10 );
}
// Actualise l'indice AQI - update AQI index
updateAQILevel();
lastAQIs[measurementNumber%BUFFER_SIZE] = AQI;
int elements = (measurementNumber>BUFFER_SIZE) ? BUFFER_SIZE : measurementNumber;
int average = 0;
for (int i=0; i<elements; i++){
average+=lastAQIs[i].AQI;
}
if (elements != 0) AQIAvg = average/elements;
else AQIAvg = AQI.AQI;
updateAQIDisplay();
Serial.print("AQIs => PM25: "); Serial.print(AQI.AqiPM25); Serial.print(" | PM10: "); Serial.println(AQI.AqiPM10);
Serial.print(" | AQI: "); Serial.println(AQI.AQI); Serial.print(" | Message: "); Serial.println(AQI.AqiString);
//blink(AQI.AQI);
measurementNumber++;
}
void blink(){
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(200);
}
void blink(int times) {
for (int i=0; i<times; i++){
blink();
}
}
void setup() {
Serial.begin(9600);
dustSensorInitialConfig();
ledInitialConfig();
tftInitialConfig();
// warm up for the dust sensor (1 minute)
warmUp();
Serial.println("Ready!");
tft.println("Ready!");
tftDrawBackground();
AQI.starttime = millis();
timer.setInterval(sampletime_ms, updateAQI);
//pinMode(TS_INTERRUPTION, INPUT_PULLUP);
//attachInterrupt(TS_INTERRUPTION, toggleScreen, RISING);
//PCintPort::attachInterrupt(TS_INTERRUPTION, toggleScreen, CHANGE); // attach a PinChange Interrupt to our pin on the rising edge
// (RISING, FALLING and CHANGE all work with this library)
if (!ts.begin()) Serial.println("Failure on touch screen initialization");
}
void loop() {
AQI.lowpulseoccupancyPM10 += pulseIn(DUST_SENSOR_DIGITAL_PIN_PM10, LOW);
AQI.lowpulseoccupancyPM25 += pulseIn(DUST_SENSOR_DIGITAL_PIN_PM25, LOW);
// polling methodfor touch screen
if (ts.touched()) toggleScreen();
timer.run();
}
void diagnosis(){
// read diagnostics (optional but can help debug problems)
uint8_t x = tft.readcommand8(ILI9341_RDMODE);
Serial.print("Display Power Mode: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(ILI9341_RDMADCTL);
Serial.print("MADCTL Mode: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(ILI9341_RDPIXFMT);
Serial.print("Pixel Format: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(ILI9341_RDIMGFMT);
Serial.print("Image Format: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(ILI9341_RDSELFDIAG);
Serial.print("Self Diagnostic: 0x"); Serial.println(x, HEX);
}
void dustSensorInitialConfig(){
pinMode(DUST_SENSOR_DIGITAL_PIN_PM10,INPUT);
pinMode(DUST_SENSOR_DIGITAL_PIN_PM25,INPUT);
}
void ledInitialConfig(){
pinMode(LED_BUILTIN, OUTPUT);
}
void warmUp(){
// wait for DSM501 to warm up (typically 60s)
for (int i = 1; i <= SENSOR_WARMMUP_TIME; i++)
{
delay(1000); // 1s
//Serial
Serial.print(i);
Serial.println(" s (wait 60s for DSM501 to warm up)");
//TFT
if (i == MAX_LINES) {
tft.fillScreen(ILI9341_BLACK);
tft.setCursor(0, 0);
}
tft.print(i);
tft.println(" s (wait 60s for DSM501 to warm up)");
}
}
void tftInitialConfig(){
// diagnosis
tft.begin();
diagnosis();
// prepare for writing the first text
tft.fillScreen(ILI9341_BLACK);
tft.setCursor(0, 0);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(1);
w = tft.width();
h = tft.height();
// control backlight with TS_BACKLIGHT pin
pinMode(TS_BACKLIGHT, OUTPUT);
screenOn();
}
void tftDrawBackground() {
x1 = 0;
x2 = w;
y1 = y2 = h/2;
tft.fillScreen(BACKGROUND_COLOR);
for (int i=0; i<CENTRAL_LINEWIDTH; i++){
tft.drawLine(x1, y1-CENTRAL_LINEWIDTH/2+i, x2, y2-CENTRAL_LINEWIDTH/2+i, FOREGROUND_COLOR);
}
/* Upper side */
tftUpperBackground();
/* Down side */
tftLowerBackground();
}
void tftUpperBackground() {
tftUpperBackground(UPPER_BG_COLOR);
}
void tftUpperBackground(int color) {
tft.fillRect(0, 0, w, h/2-CENTRAL_LINEWIDTH/2, color);
}
void tftLowerBackground() {
tftLowerBackground(LOWER_BG_COLOR);
}
void tftLowerBackground(int color) {
tft.fillRect(0, h/2+CENTRAL_LINEWIDTH/2, w, h/2-CENTRAL_LINEWIDTH/2, color);
}
void tftLowerUpLeftCorner(int color) {
tft.fillRoundRect(CENTRAL_LINEWIDTH, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH, w/3, h/3, CENTRAL_LINEWIDTH, color);
tft.drawRoundRect(CENTRAL_LINEWIDTH, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH, w/3, h/3, CENTRAL_LINEWIDTH, FOREGROUND_COLOR);
}
void tftLowerUpRightCorner(int color){
tft.fillRoundRect(w-w/3-CENTRAL_LINEWIDTH, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH, w/3, h/3, CENTRAL_LINEWIDTH, color);
tft.drawRoundRect(w-w/3-CENTRAL_LINEWIDTH, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH, w/3, h/3, CENTRAL_LINEWIDTH, FOREGROUND_COLOR);
}
void tftLowerMessage(String message) {
tft.setCursor(w/7, h/2+h/3+CENTRAL_LINEWIDTH*5);
tft.setTextSize(2);
tft.setTextColor(ILI9341_BLACK);
tft.println(message);
}
void tftLowerUpLeftTitle(String title) {
tft.setCursor(CENTRAL_LINEWIDTH*2, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH*2);
tft.setTextSize(2);
tft.setTextColor(ILI9341_BLACK);
tft.println(title);
}
void tftLowerUpRightTitle(String title) {
tft.setCursor(w-w/3, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH*2);
tft.setTextSize(2);
tft.setTextColor(ILI9341_BLACK);
tft.println(title);
}
void tftLowerUpLeftMessageCursor(int line){
tft.setCursor(CENTRAL_LINEWIDTH*2, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH*6+CENTRAL_LINEWIDTH*2*line);
tft.setTextSize(1);
tft.setTextColor(ILI9341_BLACK);
}
void tftLowerUpRightMessageCursor(int line){
tft.setCursor(w-w/3, h/2+CENTRAL_LINEWIDTH/2+CENTRAL_LINEWIDTH*6+CENTRAL_LINEWIDTH*2*line);
tft.setTextSize(1);
tft.setTextColor(ILI9341_BLACK);
}
void tftUpperMessageCursor(int line, int column, int size) {
tft.setCursor(w/16*column, CENTRAL_LINEWIDTH*4*line);
tft.setTextSize(size);
tft.setTextColor(ILI9341_BLACK);
}
/*
* Calcul l'indice de qualité de l'air français ATMO
* Calculate French ATMO AQI indicator
*/
int getATMO( int sensor, float density ){
if ( sensor == PM25_SENSOR ) { //PM2,5
if ( density <= 11 ) {
return 1;
} else if ( density > 11 && density <= 24 ) {
return 2;
} else if ( density > 24 && density <= 36 ) {
return 3;
} else if ( density > 36 && density <= 41 ) {
return 4;
} else if ( density > 41 && density <= 47 ) {
return 5;
} else if ( density > 47 && density <= 53 ) {
return 6;
} else if ( density > 53 && density <= 58 ) {
return 7;
} else if ( density > 58 && density <= 64 ) {
return 8;
} else if ( density > 64 && density <= 69 ) {
return 9;
} else {
return 10;
}
} else { // sensor == PM10_SENSOR
if ( density <= 6 ) {
return 1;
} else if ( density > 6 && density <= 13 ) {
return 2;
} else if ( density > 13 && density <= 20 ) {
return 3;
} else if ( density > 20 && density <= 27 ) {
return 4;
} else if ( density > 27 && density <= 34 ) {
return 5;
} else if ( density > 34 && density <= 41 ) {
return 6;
} else if ( density > 41 && density <= 49 ) {
return 7;
} else if ( density > 49 && density <= 64 ) {
return 8;
} else if ( density > 64 && density <= 79 ) {
return 9;
} else {
return 10;
}
}
}
void updateAQIDisplay(){
/*
* 1 EXCELLENT
* 2 GOOD
* 3 ACCEPTABLE
* 4 MODERATE
* 5 HEAVY
* 6 SEVERE
* 7 HAZARDOUS
*/
if ( COUNTRY == 0 ) {
// Système ATMO français - French ATMO AQI system
switch ( AQI.AQI) {
case 10:
AQI.AqiString = SEVERE;
AQI.AqiColor = SEVERE_COLOR;
break;
case 9:
AQI.AqiString = HEAVY;
AQI.AqiColor = HEAVY_COLOR;
break;
case 8:
AQI.AqiString = HEAVY;
AQI.AqiColor = HEAVY_COLOR;
break;
case 7:
AQI.AqiString = MODERATE;
AQI.AqiColor = MODERATE_COLOR;
break;
case 6:
AQI.AqiString = MODERATE;
AQI.AqiColor = MODERATE_COLOR;
break;
case 5:
AQI.AqiString = ACCEPTABLE;
AQI.AqiColor = ACCEPTABLE_COLOR;
break;
case 4:
AQI.AqiString = GOOD;
AQI.AqiColor = GOOD_COLOR;
break;
case 3:
AQI.AqiString = GOOD;
AQI.AqiColor = GOOD_COLOR;
break;
case 2:
AQI.AqiString = EXCELLENT;
AQI.AqiColor = EXCELLENT_COLOR;
break;
case 1:
AQI.AqiString = EXCELLENT;
AQI.AqiColor = EXCELLENT_COLOR;
break;
}
} else if ( COUNTRY == 1 ) {
// European CAQI
switch ( AQI.AQI) {
case 25:
AQI.AqiString = GOOD;
AQI.AqiColor = GOOD_COLOR;
break;
case 50:
AQI.AqiString = ACCEPTABLE;
AQI.AqiColor = ACCEPTABLE_COLOR;
break;
case 75:
AQI.AqiString = MODERATE;
AQI.AqiColor = MODERATE_COLOR;
break;
case 100:
AQI.AqiString = HEAVY;
AQI.AqiColor = HEAVY_COLOR;
break;
default:
AQI.AqiString = SEVERE;
AQI.AqiColor = SEVERE_COLOR;
}
} else if ( COUNTRY == 2 ) {
// USA / CN
if ( AQI.AQI <= 50 ) {
AQI.AqiString = GOOD;
AQI.AqiColor = GOOD_COLOR;
} else if ( AQI.AQI > 50 && AQI.AQI <= 100 ) {
AQI.AqiString = ACCEPTABLE;
AQI.AqiColor = ACCEPTABLE_COLOR;
} else if ( AQI.AQI > 100 && AQI.AQI <= 150 ) {
AQI.AqiString = MODERATE;
AQI.AqiColor = MODERATE_COLOR;
} else if ( AQI.AQI > 150 && AQI.AQI <= 200 ) {
AQI.AqiString = HEAVY;
AQI.AqiColor = HEAVY_COLOR;
} else if ( AQI.AQI > 200 && AQI.AQI <= 300 ) {
AQI.AqiString = SEVERE;
AQI.AqiColor = SEVERE_COLOR;
} else {
AQI.AqiString = HAZARDOUS;
AQI.AqiColor = HAZARDOUS_COLOR;
}
}
drawDisplay();
}
/*
* CAQI Européen - European CAQI level
* source : http://www.airqualitynow.eu/about_indices_definition.php
*/
int getACQI( int sensor, float density ){
if ( sensor == 0 ) { //PM2,5
if ( density == 0 ) {
return 0;
} else if ( density <= 15 ) {
return 25 ;
} else if ( density > 15 && density <= 30 ) {
return 50;
} else if ( density > 30 && density <= 55 ) {
return 75;
} else if ( density > 55 && density <= 110 ) {
return 100;
} else {
return 150;
}
} else { //PM10
if ( density == 0 ) {
return 0;
} else if ( density <= 25 ) {
return 25 ;
} else if ( density > 25 && density <= 50 ) {
return 50;
} else if ( density > 50 && density <= 90 ) {
return 75;
} else if ( density > 90 && density <= 180 ) {
return 100;
} else {
return 150;
}
}
}
/*
* AQI formula: https://en.wikipedia.org/wiki/Air_Quality_Index#United_States
* Arduino code https://gist.github.com/nfjinjing/8d63012c18feea3ed04e
* On line AQI calculator https://www.airnow.gov/index.cfm?action=resources.conc_aqi_calc
*/
float calcAQI(float I_high, float I_low, float C_high, float C_low, float C) {
return (I_high - I_low) * (C - C_low) / (C_high - C_low) + I_low;
}
int getAQI(int sensor, float density) {
int d10 = (int)(density * 10);
if ( sensor == 0 ) {
if (d10 <= 0) {
return 0;
}
else if(d10 <= 120) {
return calcAQI(50, 0, 120, 0, d10);
}
else if (d10 <= 354) {
return calcAQI(100, 51, 354, 121, d10);
}
else if (d10 <= 554) {
return calcAQI(150, 101, 554, 355, d10);
}
else if (d10 <= 1504) {
return calcAQI(200, 151, 1504, 555, d10);
}
else if (d10 <= 2504) {
return calcAQI(300, 201, 2504, 1505, d10);
}
else if (d10 <= 3504) {
return calcAQI(400, 301, 3504, 2505, d10);
}
else if (d10 <= 5004) {
return calcAQI(500, 401, 5004, 3505, d10);
}
else if (d10 <= 10000) {
return calcAQI(1000, 501, 10000, 5005, d10);
}
else {
return 1001;
}
} else {
if (d10 <= 0) {
return 0;
}
else if(d10 <= 540) {
return calcAQI(50, 0, 540, 0, d10);
}
else if (d10 <= 1540) {
return calcAQI(100, 51, 1540, 541, d10);
}
else if (d10 <= 2540) {
return calcAQI(150, 101, 2540, 1541, d10);
}
else if (d10 <= 3550) {
return calcAQI(200, 151, 3550, 2541, d10);
}
else if (d10 <= 4250) {
return calcAQI(300, 201, 4250, 3551, d10);
}
else if (d10 <= 5050) {
return calcAQI(400, 301, 5050, 4251, d10);
}
else if (d10 <= 6050) {
return calcAQI(500, 401, 6050, 5051, d10);
}
else {
return 1001;
}
}
}
void drawDisplay(){
// draw global AQI level
drawAQILevel(false, "GLOBAL", AQI.AQI);
// draw PM25 AQI level
drawAQILevel(false, "PM25", AQI.AqiPM25);
// draw PM10 AQI level
drawAQILevel(false, "PM10", AQI.AqiPM10);
// draw last BUFFER_SIZE average global AQI level
drawAQILevel(true, "AVERAGE", AQIAvg);
// write global AQI message
writeAQILevelMessage(AQI.AqiString + " (" + AQI.AQI + ")");
// write titles
tftLowerUpLeftTitle("PM25:");
tftLowerUpRightTitle("PM10:");
// write PM25 values
writePM25Values();
// write PM10 values
writePM10Values();
// write average AQI message
writeAvgAQIMessage();
}
void writePM25Values(){
tftLowerUpLeftMessageCursor(0);
tft.print("Conc: ");
tft.println(AQI.concentrationPM25);
tftLowerUpLeftMessageCursor(1);
tft.print("AQI: ");
tft.println(AQI.AqiPM25);
}
void writePM10Values(){
tftLowerUpRightMessageCursor(0);
tft.print("Conc: ");
tft.println(AQI.concentrationPM10);
tftLowerUpRightMessageCursor(1);
tft.print("AQI: ");
tft.println(AQI.AqiPM10);
}
void writeAQILevelMessage(String message){
tftLowerMessage(message);
}
void writeAvgAQIMessage(){
tftUpperMessageCursor(1, 4, 1);
tft.print("Avg for the last ");
tft.println((measurementNumber<BUFFER_SIZE) ? measurementNumber+1 : BUFFER_SIZE);
tftUpperMessageCursor(2, 4, 1);
tft.print("AQI measurements: ");
tftUpperMessageCursor(3, 7, 2);
tft.println(AQIAvg);
Serial.print("Avg for the last: "); Serial.print(measurementNumber); Serial.print(" AQI measurements: "); Serial.println(AQIAvg);
}
void drawAQILevel(boolean average, String partSize, int level){
switch(level){
case 1:
drawBackground(average, partSize, EXCELLENT_COLOR);
break;
case 2:
drawBackground(average, partSize, EXCELLENT_COLOR);
break;
case 3:
drawBackground(average, partSize, GOOD_COLOR);
break;
case 4:
drawBackground(average, partSize, GOOD_COLOR);
break;
case 5:
drawBackground(average, partSize, ACCEPTABLE_COLOR);
break;
case 6:
drawBackground(average, partSize, MODERATE_COLOR);
break;
case 7:
drawBackground(average, partSize, MODERATE_COLOR);
break;
case 8:
drawBackground(average, partSize, HEAVY_COLOR);
break;
case 9:
drawBackground(average, partSize, HEAVY_COLOR);
break;
case 10:
drawBackground(average, partSize, HAZARDOUS_COLOR);
break;
}
}
void drawBackground(boolean average, String partSize, int color){
if (!average){
if (partSize == "GLOBAL") {
tftLowerBackground(color);
} else if (partSize == "PM25") {
tftLowerUpLeftCorner(color);
} else if (partSize == "PM10") {
tftLowerUpRightCorner(color);
}
} else{
tftUpperBackground(color);
}
}
void screenOn(){
screenBacklight = true;
digitalWrite(TS_BACKLIGHT, HIGH);
}
void screenOff(){
screenBacklight = false;
digitalWrite(TS_BACKLIGHT, LOW);
}
void toggleScreen(){
(screenBacklight) ? screenOff() : screenOn();
Serial.print("Toggl screen. Screen is now: ");
Serial.println(screenBacklight);
}