-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathRegression2D.py
55 lines (52 loc) · 1.57 KB
/
Regression2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def power2sum(tab):
somme = 0.0
for i in range(len(tab)):
somme += tab[i] ** 2
return somme
def sumXY(tab1, tab2):
somme = 0
for i in range(len(tab1)):
somme += tab1[i] * tab2[i]
return somme
def sum(tab):
somme = 0.0
for i in range(len(tab)):
somme += tab[i]
return somme
def Clcul__A_RE(x, z):
n = len(x)
one = (n * (sumXY(x, z)) - sum(x) * sum(z))
two = (n * (power2sum(x)) - sum(x) ** 2)
return (one / two)
def Calcul__B_RE(x, z):
n = len(x)
one = (sum(z) * power2sum(x)) - (sum(x) * sumXY(x, z))
two = (n * power2sum(x) - sum(x) ** 2)
return (one / two)
def getNe(Filename):
with open(Filename) as f:
array = []
for line in f: # read rest of lines
array.append([float(x) for x in line.split()])
return len(array)
def Regression2d(FileName):
with open(FileName) as f:
array = []
for line in f: # read rest of lines
array.append([float(x) for x in line.split()])
yarray = []
for x in range(len(array)):
yarray.append(array[x][1])
zarray = []
for x in range(len(array)):
zarray.append(array[x][2])
xarray = []
for x in range(len(array)):
xarray.append(array[x][0])
a = Clcul__A_RE(xarray, zarray)
b = Calcul__B_RE(xarray, zarray)
zA = []
for i in range(len(xarray)):
zA.append(a * xarray[i] + b )
# -----------------------------------------------------------------------------
return a,b, xarray, zarray, zA