-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtext_classifier.py
74 lines (58 loc) · 2.48 KB
/
text_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from models.doc2vec_model import doc2VecModel
from models.classifier_model import classifierModel
import os
import logging
import inspect
import pandas as pd
from sklearn.model_selection import train_test_split
logging.basicConfig(
format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
base_file_path = inspect.getframeinfo(inspect.currentframe()).filename
project_dir_path = os.path.dirname(os.path.abspath(base_file_path))
data_path = os.path.join(project_dir_path, 'data')
default_classifier = os.path.join(
project_dir_path, 'classifiers', 'logreg_model.pkl')
default_doc2vec = os.path.join(project_dir_path, 'classifiers', 'd2v.model')
default_dataset = os.path.join(data_path, 'dataset.csv')
class TextClassifier():
def __init__(self):
super().__init__()
self.d2v = doc2VecModel()
self.classifier = classifierModel()
self.dataset = None
def read_data(self, filename):
filename = os.path.join(data_path, filename)
self.dataset = pd.read_csv(filename, header=0, delimiter="\t")
def prepare_all_data(self):
x_train, x_test, y_train, y_test = train_test_split(
self.dataset.review, self.dataset.sentiment, random_state=0,
test_size=0.1)
x_train = doc2VecModel.label_sentences(x_train, 'Train')
x_test = doc2VecModel.label_sentences(x_test, 'Test')
all_data = x_train + x_test
return x_train, x_test, y_train, y_test, all_data
def prepare_test_data(self, sentence):
x_test = doc2VecModel.label_sentences(sentence, 'Test')
return x_test
def train_classifier(self):
x_train, x_test, y_train, y_test, all_data = self.prepare_all_data()
self.d2v.initialize_model(all_data)
self.d2v.train_model()
self.classifier.initialize_model()
self.classifier.train_model(self.d2v, x_train, y_train)
self.classifier.test_model(self.d2v, x_test, y_test)
return self.d2v, self.classifier
def test_classifier(self):
_, x_test, _, y_test, _ = self.prepare_all_data()
if (self.d2v.model is None or self.classifier.model is None):
logging.info(
"Models Not Found, Train First or Use Correct Model Names")
else:
self.classifier.test_model(self.d2v, x_test, y_test)
def run(dataset_file):
tc = TextClassifier()
tc.read_data(dataset_file)
tc.train_classifier()
tc.test_classifier()
if __name__ == "__main__":
run("dataset.csv")