-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlec60_queue.cpp
341 lines (296 loc) · 6.37 KB
/
lec60_queue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Queue STL
/*
#include <iostream>
#include <queue>
using namespace std;
int main()
{
queue<int> q;
q.push(11);
cout << q.front() << endl;
q.push(15);
q.push(13);
cout << q.back() << endl;
cout << "Size = " << q.size() << endl;
q.pop();
q.pop();
q.pop();
cout << "Size = " << q.size() << endl;
if (q.empty())
cout << "Queue is empty " << endl;
else
cout << "Queue is not empty " << endl;
return 0;
}
*/
// Queue implementation
/*
#include<iostream>
using namespace std;
class Queue {
int* arr;
int qfront;
int rear;
int size;
public:
Queue() {
size = 100001;
arr = new int[size];
qfront = 0;
rear = 0;
}
bool isEmpty() {
if(qfront == rear) {
return true;
}
else
{
return false;
}
}
void enqueue(int data) {
if(rear == size)
cout << "Queue is Full" << endl;
else
{
arr[rear] = data;
rear++;
}
}
int dequeue() {
if(qfront == rear) {
return -1;
}
else
{ int ans = arr[qfront];
arr[qfront] = -1;
qfront++;
if(qfront==rear){
qfront = 0;
rear = 0;
}
return ans;
}
}
int front() {
if(qfront == rear) {
return -1;
}
else
{
return arr[qfront];
}
}
};
*/
// Circular Queue
/*
class CircularQueue{
public:
// Initialize your data structure.
int *arr;
int front;
int rear;
int size;
CircularQueue(int n){
arr = new int[n];
size = n;
front = -1;
rear = -1;
}
// Enqueues 'X' into the queue. Returns true if it gets pushed into the stack, and false otherwise.
bool enqueue(int value){
if((front == 0 && rear == size -1)||(rear==(front-1)%(size-1)))
return false;
else if(front ==-1 && rear ==-1)
{
front =0;
rear = 0;
arr[rear]= value;
return true;
}
else if(front!=0&&rear==size-1)
{
rear = 0;
arr[rear]=value;
return true;
}
else {
rear++;
arr[rear]=value;
return true;
}
}
// Dequeues top element from queue. Returns -1 if the stack is empty, otherwise returns the popped element.
int dequeue(){
if((front==-1 && rear==-1))
return -1;
else if(front == rear){
int i=arr[rear];
front =-1;
rear = -1;
return i;
}
else if(front ==size-1)
{
int i= arr[front];
front = 0;
return i;
}
else
{
int i= arr[front];
front++;
return i;
}
}
};
*/
// Doubly ended queue
// STL
/*
#include <iostream>
#include <stdio.h>
#include <deque>
using namespace std;
int main()
{
deque<int> d;
d.push_front(12);
d.push_back(14);
cout << d.front() << endl;
cout << d.back() << endl;
d.pop_front();
cout << d.front() << endl;
cout << d.back() << endl;
if(d.empty()) cout<<"queue is empty"<<endl;
else cout<<"queue is not empty"<<endl;
}
*/
//Implementation
/*
class Deque
{
public:
// Initialize your data structure.
int *arr;
int front;
int rear;
int size;
Deque(int n)
{
arr = new int[n];
size = n;
front = -1;
rear = -1;
}
// Pushes 'X' in the front of the deque. Returns true if it gets pushed into the deque, and false otherwise.
bool pushFront(int x)
{
if(isFull())
return false;
else if(front ==-1&&rear ==-1){
front = 0;
rear = 0;
}
else if(front==0 && rear !=size-1){
front = size-1;
}
else{
front--;
}
arr[front]= x;
return true;
}
// Pushes 'X' in the back of the deque. Returns true if it gets pushed into the deque, and false otherwise.
bool pushRear(int x)
{
if(isFull())
return false;
else if(front ==-1&&rear ==-1){
front = 0;
rear = 0;
}
else if(front!=0&&rear==size-1)
{
rear = 0;
}
else{
rear++;
}
arr[rear]=x;
return true;
}
// Pops an element from the front of the deque. Returns -1 if the deque is empty, otherwise returns the popped element.
int popFront()
{
if(front == -1){
return -1;
}
int ans = arr[front];
arr[front] = -1;
if(front == rear) {
front = rear = -1;
}
else if(front == size - 1) {
front = 0;
}
else
{
front++;
}
return ans;
}
// Pops an element from the back of the deque. Returns -1 if the deque is empty, otherwise returns the popped element.
int popRear()
{
if((front==-1 && rear==-1))
return -1;
int ans = arr[rear];
arr[rear]=-1;
if(front == rear){
front =-1;
rear = -1;
}
else if(rear==0)
{
rear = size-1;
}
else
{
rear--;
}
return ans;
}
// Returns the first element of the deque. If the deque is empty, it returns -1.
int getFront()
{
if((front==-1 && rear==-1))
return -1;
else
return arr[front];
}
// Returns the last element of the deque. If the deque is empty, it returns -1.
int getRear()
{
if((front==-1 && rear==-1))
return -1;
else
return arr[rear];
}
// Returns true if the deque is empty. Otherwise returns false.
bool isEmpty()
{
if((front==-1 && rear==-1))
return true;
return false;
}
// Returns true if the deque is full. Otherwise returns false.
bool isFull()
{
if((front == 0 && rear == size -1)||(front!=0 && rear==(front-1)%(size-1)))
return true;
return false;
}
};
*/