-
Notifications
You must be signed in to change notification settings - Fork 10
/
dvbpr_train.py
155 lines (137 loc) · 5.53 KB
/
dvbpr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import random
from PIL import Image
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing
from torch.utils.data import DataLoader, Subset
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from datasets import UserModeImgDataset, UserModeDataset, UserModeFeatDataset
from models import DVBPR
from trainers import ImgTrainer
from trainers.losses import bpr_loss
from utils.data import extract_embedding
if __name__ == '__main__':
# Parameters
RNG_SEED = 0
BASE_PATH = '/home/pcerdam/VisualRecSys-Tutorial-IUI2021/'
TRAINING_PATH = os.path.join(BASE_PATH, "data", "naive-user-train.csv")
EMBEDDING_PATH = os.path.join(BASE_PATH, "data", "embedding-resnet50.npy")
VALIDATION_PATH = os.path.join(BASE_PATH, "data", "naive-user-validation.csv")
IMAGES_PATH = os.path.join('/mnt/data2/wikimedia/mini-images-224-224-v2')
CHECKPOINTS_DIR = os.path.join(BASE_PATH, "checkpoints")
version = f"DVBPR_wikimedia_resnetEmbTable"
USE_GPU = True # False #
version = 'DVBPR_wikimediaAlexNet_notPretrained_100_wLatent'
# Parameters (training)
SETTINGS = {
"dataloader:batch_size": 128, # 256, # 512, # 64, # 64, # 24, # 42_000,128, # x
"dataloader:num_workers": 4, # os.cpu_count(), # 1, #
"prev_checkpoint": False, # 'DVBPR_wikimediaAlexNetBig204_5epochs',
"model:dim_visual": 100, #2048,
"optimizer:lr": 0.001,
"optimizer:weight_decay": 0.0001,
"scheduler:factor": 0.6,
"scheduler:patience": 2,
"train:max_epochs": 5, # 1, # 5, # 150,
"train:max_lrs": 5,
"train:non_blocking": True,
"train:train_per_valid_times": 1 # 0
}
# ================================================
# Freezing RNG seed if needed
if RNG_SEED is not None:
print(f"\nUsing random seed...")
random.seed(RNG_SEED)
torch.manual_seed(RNG_SEED)
np.random.seed(RNG_SEED)
# Load embedding from file
print(f"\nLoading embedding from file... ({EMBEDDING_PATH})")
embedding = np.load(EMBEDDING_PATH, allow_pickle=True)
# Extract features and "id2index" mapping
print("\nExtracting data into variables...")
embedding, id2index, index2fn = extract_embedding(embedding, verbose=True)
print(f">> Features shape: {embedding.shape}")
# DataLoaders initialization
print("\nInitialize DataLoaders")
# Training DataLoader
train_dataset = UserModeImgDataset( # UserModeDataset( #
csv_file=TRAINING_PATH,
img_path=IMAGES_PATH,
id2index=id2index,
index2fn=index2fn
)
print(f">> Training dataset: {len(train_dataset)}")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
#Subset(train_dataset, list(range(10000))), # subset for faster tests
batch_size=SETTINGS["dataloader:batch_size"],
num_workers=SETTINGS["dataloader:num_workers"],
shuffle=True,
pin_memory=True,
)
print(f">> Training dataloader: {len(train_dataloader)}")
# Validation DataLoader
valid_dataset = UserModeImgDataset( # UserModeDataset( #
csv_file=VALIDATION_PATH,
img_path=IMAGES_PATH,
id2index=id2index,
index2fn=index2fn
)
print(f">> Validation dataset: {len(valid_dataset)}")
valid_sampler = SequentialSampler(valid_dataset)
valid_dataloader = DataLoader(
#Subset(valid_dataset, list(range(10000))), # subset for faster tests
valid_dataset,
batch_size=SETTINGS["dataloader:batch_size"],
num_workers=SETTINGS["dataloader:num_workers"],
shuffle=True,
pin_memory=True,
)
print(f">> Validation dataloader: {len(valid_dataloader)}")
# Model initialization
print("\nInitialize model")
device = torch.device("cuda:0" if torch.cuda.is_available() and USE_GPU else "cpu")
if torch.cuda.is_available() != USE_GPU:
print((f"\nNotice: Not using GPU - "
f"Cuda available ({torch.cuda.is_available()}) "
f"does not match USE_GPU ({USE_GPU})"
))
N_USERS = len(set(train_dataset.ui))
N_ITEMS = len(embedding)
print(f">> N_USERS = {N_USERS} | N_ITEMS = {N_ITEMS}")
print(torch.Tensor(embedding).shape)
model = DVBPR(
N_USERS, # Number of users and items
N_ITEMS,
embedding, # experiments for debugging
SETTINGS["model:dim_visual"], # Size of visual spaces
).to(device)
print(model)
# Training setup
print("\nSetting up training")
optimizer = optim.Adam(
model.parameters(),
lr=SETTINGS["optimizer:lr"],
weight_decay=SETTINGS["optimizer:weight_decay"],
)
criterion = nn.BCEWithLogitsLoss(reduction="sum") # bpr_loss # # # nn.MarginRankingLoss(reduction="mean")
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="max", factor=SETTINGS["scheduler:factor"],
patience=SETTINGS["scheduler:patience"], verbose=True,
)
# ================================================
# Training
trainer = ImgTrainer(
model, device, criterion, optimizer, scheduler,
checkpoint_dir=CHECKPOINTS_DIR,
version=version,
)
best_model, best_acc, best_loss, best_epoch = trainer.run(
SETTINGS["train:max_epochs"], SETTINGS["train:max_lrs"],
{"train": train_dataloader, "validation": valid_dataloader},
train_valid_loops=SETTINGS["train:train_per_valid_times"],
use_checkpoint=SETTINGS["prev_checkpoint"]
)