|
| 1 | +import numpy as np |
| 2 | +from mpi4py import MPI |
| 3 | +import math |
| 4 | +import time |
| 5 | +import numba |
| 6 | +from matplotlib import pyplot |
| 7 | + |
| 8 | +N = 4 |
| 9 | + |
| 10 | +@numba.njit |
| 11 | +def coefficient(state, alpha): |
| 12 | + |
| 13 | + ssum = 0.0 |
| 14 | + for i in range(N): |
| 15 | + for j in range(i+1, N): |
| 16 | + |
| 17 | + deno = min(math.fabs(1.0*j - 1.0*i), N*1.0 - math.fabs(1.0*j - 1.0*i) ) |
| 18 | + # print(state[i] * state[j] / deno) |
| 19 | + ssum += state[i] * state[j] / deno |
| 20 | + |
| 21 | + return math.exp(-alpha * ssum) |
| 22 | + |
| 23 | +@numba.njit |
| 24 | +def local_energy(state, coeff, alpha): |
| 25 | + |
| 26 | + res = 0.0 |
| 27 | + ssum = 0.0 |
| 28 | + |
| 29 | + for i in range(N): |
| 30 | + res += state[i] * state[(i+1)%N] |
| 31 | + |
| 32 | + for i in range(N): |
| 33 | + if(state[i] * state[(i+1)%N] < 0.0): |
| 34 | + state_new = state.copy() |
| 35 | + # print(state_new) |
| 36 | + state_new[i] *= -1.0 |
| 37 | + state_new[(i+1)%N] *= -1.0 |
| 38 | + |
| 39 | + ssum += coefficient(state_new, alpha)/coeff |
| 40 | + |
| 41 | + return res - 0.5 * ssum |
| 42 | + |
| 43 | + |
| 44 | +@numba.njit |
| 45 | +def sampler(alpha, Nsample = 5000, Nskip = 3): |
| 46 | + |
| 47 | + state = np.ones(N) |
| 48 | + state[: N//2] = -1 |
| 49 | + |
| 50 | + state *= 0.5 |
| 51 | + state = state[np.random.permutation(N)] |
| 52 | + |
| 53 | + ssum = 0.0 |
| 54 | + # coeff_old = coefficient(state, alpha) |
| 55 | + |
| 56 | + for i in range(Nsample): |
| 57 | + |
| 58 | + for i in range(Nskip): |
| 59 | + |
| 60 | + x = np.random.randint(low = 0, high = N) |
| 61 | + y = x |
| 62 | + |
| 63 | + while(state[y] * state[x] > 0): |
| 64 | + y = np.random.randint(low = 0, high = N) |
| 65 | + |
| 66 | + new_state = state.copy() |
| 67 | + new_state[x] *= -1.0 |
| 68 | + new_state[y] *= -1.0 |
| 69 | + |
| 70 | + coeff_old = coefficient(state, alpha) |
| 71 | + coeff_new = coefficient(new_state, alpha) |
| 72 | + |
| 73 | + if(np.random.random() < min(1.0, (coeff_new**2)/(coeff_old**2))): |
| 74 | + state = new_state.copy() |
| 75 | + coeff_old = coeff_new |
| 76 | + |
| 77 | + tmp = local_energy(state, coeff_old, alpha) |
| 78 | + |
| 79 | + |
| 80 | + ssum += tmp |
| 81 | + |
| 82 | + return ssum / Nsample |
| 83 | + |
| 84 | + |
| 85 | +if(__name__ == '__main__'): |
| 86 | + |
| 87 | + comm = MPI.COMM_WORLD |
| 88 | + nprocs = comm.Get_size() |
| 89 | + rank = comm.Get_rank() |
| 90 | + |
| 91 | + ns = 10000 |
| 92 | + ns = ns // nprocs |
| 93 | + |
| 94 | + |
| 95 | + if(rank == 0): |
| 96 | + x, y = [], [] |
| 97 | + |
| 98 | + |
| 99 | + t0 = time.time() |
| 100 | + |
| 101 | + for i in range(-30, 40): |
| 102 | + |
| 103 | + alpha = i * 0.1 |
| 104 | + |
| 105 | + # comm.Barrier() |
| 106 | + mpi_energy = sampler(alpha, ns) / nprocs |
| 107 | + |
| 108 | + energy = comm.reduce(mpi_energy, root=0) |
| 109 | + |
| 110 | + if(rank == 0): |
| 111 | + print("Alpha: %.2f, Energy: %.2f" % (alpha, energy)) |
| 112 | + x.append(alpha) |
| 113 | + y.append(energy) |
| 114 | + |
| 115 | + if(rank == 0): |
| 116 | + |
| 117 | + t1 = time.time() |
| 118 | + print("Elapsed time: %.2f sec" % (t1 - t0)) |
| 119 | + |
| 120 | + pyplot.xlabel("alpha") |
| 121 | + pyplot.ylabel("Energy") |
| 122 | + pyplot.plot(x, y, 'o', label="VMC") |
| 123 | + pyplot.legend() |
| 124 | + pyplot.show() |
| 125 | + |
| 126 | + |
| 127 | + |
| 128 | + |
| 129 | + |
| 130 | + |
| 131 | + |
| 132 | + |
| 133 | + |
| 134 | + |
| 135 | + |
0 commit comments