-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodels.py
59 lines (46 loc) · 2.01 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import chainer
from chainer import functions as F
from chainer import links as L
class Generator(chainer.Chain):
"""(batch_size, n_z) -> (batch_size, 3, 32, 32)"""
def __init__(self):
super().__init__(
dc1=L.Deconvolution2D(None, 256, 4, stride=1, pad=0, nobias=True),
dc2=L.Deconvolution2D(256, 128, 4, stride=2, pad=1, nobias=True),
dc3=L.Deconvolution2D(128, 64, 4, stride=2, pad=1, nobias=True),
dc4=L.Deconvolution2D(64, 3, 4, stride=2, pad=1, nobias=True),
bn_dc1=L.BatchNormalization(256),
bn_dc2=L.BatchNormalization(128),
bn_dc3=L.BatchNormalization(64)
)
def __call__(self, z, test=False):
h = F.reshape(z, (z.shape[0], -1, 1, 1))
h = F.relu(self.bn_dc1(self.dc1(h), test=test))
h = F.relu(self.bn_dc2(self.dc2(h), test=test))
h = F.relu(self.bn_dc3(self.dc3(h), test=test))
h = F.tanh(self.dc4(h))
return h
class Critic(chainer.Chain):
"""(batch_size, 3, 32, 32) -> ()"""
def __init__(self):
super().__init__(
c0=L.Convolution2D(3, 64, 4, stride=2, pad=1, nobias=True),
c1=L.Convolution2D(64, 128, 4, stride=2, pad=1, nobias=True),
c2=L.Convolution2D(128, 256, 4, stride=2, pad=1, nobias=True),
c3=L.Convolution2D(256, 1, 4, stride=1, pad=0, nobias=True),
bn_c1=L.BatchNormalization(128),
bn_c2=L.BatchNormalization(256)
)
def clamp(self, lower=-0.01, upper=0.01):
"""Clamp all parameters, including the batch normalization
parameters."""
for params in self.params():
params_clipped = F.clip(params, lower, upper)
params.data = params_clipped.data
def __call__(self, x, test=False):
h = F.leaky_relu(self.c0(x))
h = F.leaky_relu(self.bn_c1(self.c1(h), test=test))
h = F.leaky_relu(self.bn_c2(self.c2(h), test=test))
h = self.c3(h)
h = F.sum(h) / h.size # Mean
return h