-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcoulvec.c
840 lines (776 loc) · 24.8 KB
/
coulvec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "coul.h"
#include "coulvec.h"
#include "coultau.h"
#include "coulfact.h"
/* from MPUG */
#include "utility.h"
/* FIXME: work out where these should be declared */
extern bool debugv, debugV;
static inline mpz_t *PARAM_TO_PTR(__mpz_struct *z) {
return (mpz_t *)z;
}
mpz_t temp;
/* resizable list of uints */
typedef struct s_sui {
uint size;
uint count;
uint *ui;
} t_sui;
/* constraints for a single modulus */
typedef struct s_cvec {
uint modulus;
uint count; /* count of disallowed values */
uint unfixed_count; /* count of unfixed disallowed values */
uint unique_count; /* count of uniquely disallowed values */
uint unique_merged; /* unique count including merged */
uint modval; /* fixed value if in_mult */
bool in_mult; /* TRUE if included in overall modulus */
char *v; /* vector of disallowed values */
char *vu; /* vector of uniquely disallowed values */
char *vum; /* vector of uniquely disallowed including merged */
t_sui div; /* list of immediate divisors of this modulus */
t_sui mult; /* list of immediate multiples of this modulus */
double potency; /* ratio uniquely disallowed including merged */
} t_cvec;
/* typedef struct s_context t_context (in header) */
/* constraints for all moduli */
struct s_context {
uint n;
uint k;
mpz_t *min; /* requested minimum d, passed in */
uint *target_t; /* vector of (remaining) tau */
t_cvec **vec; /* modular constraints: vec[m] is mod m */
uint nvec;
mpz_t mod_mult; /* fixed moduli: d == mod_mult (mod mult) */
mpz_t mult;
uint *sc; /* list of packed moduli */
uint *sc_add; /* sc_add/mult used by prep_test/test_prepped */
uint *sc_mult;
uint sc_size;
uint sc_count; /* number of active packed moduli */
};
char *vresidues = NULL;
uint nvresidues = 0;
/* a single pending constraint: v !== offset (mod modulus) */
typedef struct s_suppress {
uint modulus;
uint offset;
bool depend;
} t_suppress;
t_suppress *suppress_stack = NULL;
uint suppress_count = 0;
uint suppress_size = 0;
#if defined(TYPE_o) || defined(TYPE_r)
static inline uint TYPE_OFFSET(t_context *cx, uint i) {
return i;
}
#elif defined(TYPE_a)
static inline uint TYPE_OFFSET(t_context *cx, uint i) {
return i * cx->n;
}
#else
# error "No type defined"
#endif
void *mem_dup(void *src, uint size) {
void *dest = malloc(size);
memcpy(dest, src, size);
return dest;
}
t_context *cvec_init(uint n, uint k, mpz_t *min, uint *target_t) {
t_context *cx = malloc(sizeof(t_context));
cx->n = n;
cx->k = k;
cx->min = min;
cx->target_t = target_t;
cx->vec = NULL;
cx->nvec = 0;
mpz_init_set_ui(cx->mod_mult, 0);
mpz_init_set_ui(cx->mult, 1);
cx->sc = NULL;
cx->sc_add = NULL;
cx->sc_mult = NULL;
cx->sc_size = 0;
cx->sc_count = 0;
mpz_init(temp);
return cx;
}
void ctx_free(t_context *cx) {
for (uint i = 0; i < cx->nvec; ++i) {
t_cvec *cv = cx->vec[i];
if (!cv)
continue;
free(cv->v);
free(cv->vu);
free(cv->vum);
free(cv->div.ui);
free(cv->mult.ui);
free(cv);
}
free(cx->vec);
mpz_clear(cx->mod_mult);
mpz_clear(cx->mult);
free(cx->sc);
free(cx->sc_add);
free(cx->sc_mult);
free(cx);
}
void cvec_done(t_context *cx) {
ctx_free(cx);
free(vresidues);
free(suppress_stack);
mpz_clear(temp);
}
static inline void fail_402(uint m) {
report("402 Error: all values (mod %u) disallowed (%.3fs)\n", m, elapsed());
fail_silent();
}
/* size in bytes */
static inline uint vecsize(uint m) {
return (m + 7) >> 3;
}
static inline uint VECOFF(uint off) {
return off >> 3;
}
static inline char VECBIT(uint off) {
return 1 << (off & 7);
}
static inline bool TESTBIT(char *v, uint off) {
return (v[VECOFF(off)] & VECBIT(off)) ? 1 : 0;
}
static inline void SETBIT(char *v, uint off) {
v[VECOFF(off)] |= VECBIT(off);
}
static inline void CLRBIT(char *v, uint off) {
v[VECOFF(off)] &= ~VECBIT(off);
}
static inline uint mod(int i, int m) {
int v = i % m;
return (v < 0) ? m + v : v;
}
static inline double potency(uint modulus, uint count, uint unique) {
uint avail = modulus - (count - unique);
return (double)avail / (double)(avail - unique);
}
t_cvec **vec_dup(t_cvec **src, uint size) {
t_cvec **dest = malloc(size * sizeof(t_cvec *));
for (uint i = 0; i < size; ++i) {
t_cvec *si = src[i];
if (si == NULL) {
dest[i] = NULL;
continue;
}
t_cvec *di = mem_dup(si, sizeof(t_cvec));
di->v = mem_dup(si->v, vecsize(i));
di->vu = mem_dup(si->vu, vecsize(i));
di->vum = mem_dup(si->vum, vecsize(i));
di->div.ui = mem_dup(si->div.ui, si->div.count * sizeof(uint));
di->div.size = di->div.count;
di->mult.ui = mem_dup(si->mult.ui, si->mult.count * sizeof(uint));
di->mult.size = di->mult.count;
dest[i] = di;
}
return dest;
}
t_context *ctx_dup(t_context *cx) {
t_context *cy = malloc(sizeof(t_context));
cy->n = cx->n;
cy->k = cx->k;
cy->min = cx->min;
cy->target_t = cx->target_t;
cy->vec = vec_dup(cx->vec, cx->nvec);
cy->nvec = cx->nvec;
mpz_init_set(cy->mod_mult, cx->mod_mult);
mpz_init_set(cy->mult, cx->mult);
cy->sc = NULL;
cy->sc_add = NULL;
cy->sc_mult = NULL;
cy->sc_size = 0;
cy->sc_count = 0;
return cy;
}
char *residues(uint m) {
if (vecsize(m) > nvresidues) {
free(vresidues);
vresidues = calloc(vecsize(m), sizeof(char));
nvresidues = vecsize(m);
} else {
memset(vresidues, 0, vecsize(m));
}
for (uint i = 0; i <= (m >> 1); ++i)
SETBIT(vresidues, (i * i) % m);
return vresidues;
}
void add_sui(t_sui *suip, uint v) {
if (suip->count + 1 >= suip->size) {
uint size = suip->size + 10;
suip->ui = realloc(suip->ui, size * sizeof(uint));
suip->size = size;
}
suip->ui[suip->count++] = v;
}
void mult_combine(t_context *cx, mpz_t modulus, mpz_t offset) {
mpz_t zarray[4];
mpz_t *modp = PARAM_TO_PTR(modulus);
mpz_t *offp = PARAM_TO_PTR(offset);
memcpy(&zarray[0], cx->mod_mult, sizeof(mpz_t));
memcpy(&zarray[1], *offp, sizeof(mpz_t));
memcpy(&zarray[2], cx->mult, sizeof(mpz_t));
memcpy(&zarray[3], *modp, sizeof(mpz_t));
if (!chinese(cx->mod_mult, cx->mult, &zarray[0], &zarray[2], 2))
fail("chinese");
}
void mult_combine_ui(t_context *cx, uint modulus, uint offset) {
mpz_t off, mod;
mpz_init_set_ui(off, offset);
mpz_init_set_ui(mod, modulus);
mult_combine(cx, mod, off);
mpz_clear(off);
mpz_clear(mod);
}
void resize_cvec(t_context *cx, uint size) {
if (size < cx->nvec)
return;
uint newsize = cx->nvec ? (cx->nvec * 3 / 2) : 100;
if (size >= newsize)
newsize = size + 1;
cx->vec = realloc(cx->vec, newsize * sizeof(t_cvec *));
for (uint i = cx->nvec; i < newsize; ++i)
cx->vec[i] = NULL;
cx->nvec = newsize;
}
t_cvec *new_cvec(t_context *cx, uint m);
static inline t_cvec *get_cvec(t_context *cx, uint m) {
if (m < cx->nvec && cx->vec[m])
return cx->vec[m];
return new_cvec(cx, m);
}
static inline t_cvec *get_if_cvec(t_context *cx, uint m) {
if (m < cx->nvec && cx->vec[m])
return cx->vec[m];
return NULL;
}
t_cvec *new_cvec(t_context *cx, uint m) {
if (m >= cx->nvec)
resize_cvec(cx, m);
t_cvec *cv = calloc(1, sizeof(t_cvec));
cx->vec[m] = cv;
uint vsize = vecsize(m);
cv->modulus = m;
cv->v = calloc(vsize, sizeof(char));
cv->vu = calloc(vsize, sizeof(char));
cv->vum = calloc(vsize, sizeof(char));
char *v = cv->v;
t_fact f;
init_fact(&f);
simple_fact(m, &f);
for (uint fi = 0; fi < f.count; ++fi) {
uint mp = f.ppow[fi].p;
uint md = m / mp;
t_cvec *cvd = get_cvec(cx, md);
add_sui(&cv->div, md);
add_sui(&cvd->mult, m);
if (cvd->count == 0)
continue;
char *vd = cvd->v;
for (uint j = 0; j < md; ++j) {
if ((cvd->in_mult) ? (j == cvd->modval) : !TESTBIT(vd, j))
continue;
for (uint k = 0; k < mp; ++k) {
uint jk = k * md + j;
if (TESTBIT(v, jk))
continue;
if (debugV)
printf("init %u (mod %u) from %u (mod %u)\n",
jk, m, j, md);
SETBIT(v, jk);
++cv->count;
}
}
}
free_fact(&f);
/* new cvec is initialized, now check for cross-propagation */
if (cv->div.count > 1) {
for (uint di = 0; di < cv->div.count; ++di) {
uint md = cv->div.ui[di];
uint mp = m / md;
t_cvec *cvd = get_cvec(cx, md);
char *vd = cvd->v;
for (uint j = 0; j < md; ++j) {
if (TESTBIT(vd, j))
continue;
for (uint k = 0; k < mp; ++k)
if (!TESTBIT(v, k * md + j))
goto no_propagate;
suppress(cx, md, j, 0);
/* FIXME: short-circuit */
no_propagate:
;
}
}
}
return cv;
}
/* we know the value is fixed to be == v (mod m), so make sure that is
* marked in mult/mod_mult, and propagate */
void fix_cvec(t_context *cx, uint m, uint v) {
t_cvec *cv = get_cvec(cx, m);
if (cv->in_mult) {
if (v != cv->modval)
fail_402(m);
return;
}
if (TESTBIT(cv->v, v))
fail_402(m);
cv->modval = v;
cv->count = m - 1;
mult_combine_ui(cx, m, v);
cv->in_mult = 1;
if (debugv)
report("fix %u (mod %u) giving %Zu (mod %Zu)\n",
v, m, cx->mod_mult, cx->mult);
t_sui *div = &cv->div;
for (int i = 0; i < div->count; ++i) {
uint d = div->ui[i];
if (d > 1)
fix_cvec(cx, d, v % d);
}
}
/* constraint the value to be !== v (mod m)
if (depend) then this is not unique, ie there is some d > 1: m = dm'
such that we already constrain !== v (mod m')
*/
void suppress(t_context *cx, uint m, uint v, bool depend) {
if (suppress_count + 1 >= suppress_size) {
uint newsize = suppress_size ? (suppress_size * 3 / 2) : 100;
suppress_stack = realloc(suppress_stack, newsize * sizeof(t_suppress));
suppress_size = newsize;
}
uint ssi = suppress_count++;
t_suppress *ssp = &suppress_stack[ssi];
ssp->modulus = m;
ssp->offset = v;
ssp->depend = depend;
if (ssi > 0) {
/* this isn't the first, let the stack unwind to the top-level
* recurse and handle it there */
return;
}
while (suppress_count) {
ssi = --suppress_count;
ssp = &suppress_stack[ssi];
m = ssp->modulus;
v = ssp->offset;
depend = ssp->depend;
t_cvec *cm = get_cvec(cx, m);
if (cm->in_mult) {
if (v == cm->modval)
fail_402(m);
/* nothing to do */
continue;
}
if (depend) {
if (TESTBIT(cm->vu, v)) {
if (debugV)
printf("suppress %u (mod %u), now dependent\n", v, m);
CLRBIT(cm->vu, v);
--cm->unique_count;
}
if (TESTBIT(cm->v, v))
continue; /* no effect to propagate */
} else {
if (TESTBIT(cm->v, v))
continue; /* no effect to propagate */
if (debugV)
printf("suppress %u (mod %u), is independent\n", v, m);
SETBIT(cm->vu, v);
++cm->unique_count;
}
if (debugV)
printf("suppress %u (mod %u), is set\n", v, m);
SETBIT(cm->v, v);
++cm->count;
if (cm->count >= cm->modulus - 1) {
/* should not be possible */
if (cm->count >= cm->modulus)
fail_402(m);
uint last = m;
for (uint i = 0; i < m; ++i) {
if (TESTBIT(cm->v, i))
continue;
last = i;
break;
}
if (last >= m)
fail("logic error");
fix_cvec(cx, m, last);
}
for (uint i = 0; i < cm->mult.count; ++i) {
uint mp = cm->mult.ui[i];
uint d = mp / m;
for (uint j = 0; j < d; ++j)
suppress(cx, mp, m * j + v, 1);
}
for (uint i = 0; i < cm->div.count; ++i) {
uint d = cm->div.ui[i];
uint p = m / d;
uint dv = v % d;
for (uint j = 0; j < p; ++j)
if (!TESTBIT(cm->v, d * j + dv))
goto next_suppress_divisor;
for (uint j = 0; j < p; ++j) {
uint mdv = d * j + dv;
if (!TESTBIT(cm->vu, mdv))
continue;
if (debugV)
printf("suppress %u (mod %u), propagate\n", mdv, m);
CLRBIT(cm->vu, mdv);
--cm->unique_count;
}
suppress(cx, d, dv, 0);
next_suppress_divisor:
;
}
}
}
/* apply an external positive or negative modular constraint,
* restricting constraint vectors to use moduli only up to limit
* (for positive constraints).
*/
void apply_modfix(t_context *cx, mpz_t m, mpz_t v, bool negate, uint limit) {
mpz_mod(v, v, m);
if (negate) {
if (!mpz_fits_uint_p(m))
fail("negated modulus %Zu is too large");
suppress(cx, mpz_get_ui(m), mpz_get_ui(v), 0);
return;
}
/* positive: require v (mod m) for factors up to limit, force
* mult for the rest */
if (mpz_cmp_ui(m, limit) <= 0) {
uint um = mpz_get_ui(m);
uint uv = mpz_get_ui(v);
for (uint i = 0; i < um; ++i) {
if (i == uv)
continue;
suppress(cx, um, uv, 0);
}
return;
}
factor_state fs;
t_fact f;
fs_init(&fs);
init_fact(&f);
mpz_set(fs.n, m);
while (factor_one(&fs)) {
if (mpz_cmp_ui(fs.f, limit) > 0)
continue;
t_ppow pp;
pp.p = mpz_get_ui(fs.f);
pp.e = fs.e;
add_fact(&f, pp);
}
fs_clear(&fs);
for (uint i = 0; i < f.count; ++i) {
uint p = f.ppow[i].p;
uint e = f.ppow[i].e;
uint pp = p;
uint plim = limit / p;
uint prevval = 0;
uint prevpp = 1;
while (e--) {
uint thisval = mpz_fdiv_ui(v, pp);
for (uint j = 0; j < p; ++j) {
uint jval = prevpp * j + prevval;
if (jval == thisval)
continue;
suppress(cx, pp, jval, 0);
}
if (pp > plim)
break;
prevpp = pp;
pp *= p;
prevval = thisval;
}
}
free_fact(&f);
mult_combine(cx, m, v);
}
/* Search for and apply constraints for modulus m (with factorization fm).
*/
void apply_m(t_context *cx, uint m, t_fact *fm) {
uint tm = 1; /* tau(m) */
uint r = 1; /* rad(m) */
uint tmr = 1; /* tau(m/r) */
for (uint i = 0; i < fm->count; ++i) {
t_ppow *pp = &fm->ppow[i];
tm *= pp->e + 1;
r *= pp->p;
tmr *= pp->e;
}
uint mr = m / r;
for (uint i = 0; i < cx->k; ++i) {
uint di = TYPE_OFFSET(cx, i);
uint ti = cx->target_t[i];
/* tau(mx) > tau(m) for all x > 1 */
/* TODO: if ti == tm, then walk_1() and suppress anyway */
/* FIXME: if v_k is fixed to a multiple of anything coprime to m,
* we should compare a lower ti */
if (ti < tm || (ti == tm && mpz_cmp_ui(*cx->min, (int)m - (int)di) > 0))
suppress(cx, m, mod(-(int)di, m), 0);
/* mx (mod m rad(m)) with (x, rad(m)) = 1 gives forced multiple */
if ((mr % r) == 0 && (ti % tmr))
for (uint j = 1; j < r; ++j)
if (tiny_gcd(j, r) == 1)
suppress(cx, m, mod((int)mr * j - (int)di, m), 0);
/* suppress all quadratic non-residues for square target */
if (ti & 1) {
char *res = residues(m);
for (uint j = 0; j < m; ++j)
if (!TESTBIT(res, j))
suppress(cx, m, mod((int)j - (int)di, m), 0);
/* special-case p^6 + 1 factorization */
/* FIXME: generalize to p^{2x} + a^{x} for odd x: 2x+1 prime */
if (ti == 7 && i + 1 < cx->k && cx->target_t[i + 1] < 8
&& mpz_cmp_ui(*cx->min, 729 - i) > 0
) {
report("402 Error: all values (mod %u) disallowed by p^6+1"
" factorization (%.3fs)\n", m, elapsed());
fail_silent();
}
}
}
}
void dump_sc(t_context *cx) {
gmp_printf("fixed: %Zu (mod %Zu)\n", cx->mod_mult, cx->mult);
for (uint i = 0; i < cx->sc_count; ++i) {
uint mi = cx->sc[i];
t_cvec *cv = get_if_cvec(cx, mi);
if (!cv)
fail("logic error, constraints for m=%u not available", mi);
uint gi = mpz_gcd_ui(NULL, cx->mult, mi);
printf("m=%u: mg=%u, c=%u, uc=%u, um=%u, pot=%.2f\n",
mi, mi / gi, cv->unfixed_count, cv->unique_count,
cv->unique_merged, cv->potency);
}
}
void push_sc(t_context *cx, uint m) {
if (cx->sc_count + 1 >= cx->sc_size) {
uint newsize = cx->sc_size ? (cx->sc_size * 3 / 2) : 100;
cx->sc = realloc(cx->sc, newsize * sizeof(uint));
cx->sc_add = realloc(cx->sc_add, newsize * sizeof(uint));
cx->sc_mult = realloc(cx->sc_mult, newsize * sizeof(uint));
cx->sc_size = newsize;
}
cx->sc[cx->sc_count++] = m;
}
/* splice out by index */
static inline void splice_sci(t_context *cx, uint sci) {
--cx->sc_count;
uint scmove = cx->sc_count - sci;
if (scmove)
memmove(&cx->sc[sci], &cx->sc[sci + 1], scmove * sizeof(uint));
}
/* splice out by modulus, for index > sci */
static inline void splice_sc(t_context *cx, uint m, uint sci) {
for (uint scj = sci + 1; scj < cx->sc_count; ++scj)
if (cx->sc[scj] == m) {
splice_sci(cx, scj);
break;
}
}
/* sort by potency descending */
t_context *sortcx;
int cmp_potency(const void *va, const void *vb) {
uint a = *(uint *)va, b = *(uint *)vb;
double pa = sortcx->vec[a]->potency, pb = sortcx->vec[b]->potency;
return (pa > pb) ? -1 : (pa < pb) ? 1 : 0;
}
/* Pack vector for modulus ms into that for modulus md, given that md
* is a multiple of ms.
*/
void cvec_merge(t_context *cx, uint md, uint ms) {
if (debugv)
printf("pack %u into %u\n", ms, md);
t_cvec *cvd = get_cvec(cx, md);
t_cvec *cvs = get_cvec(cx, ms);
char *vums = cvs->vum;
char *vumd = cvd->vum;
uint p = md / ms;
uint gd = mpz_gcd_ui(NULL, cx->mult, md);
uint gmd = mpz_fdiv_ui(cx->mod_mult, gd);
for (uint i = 0; i < ms; ++i) {
if (!TESTBIT(vums, i))
continue;
for (uint j = 0; j < p; ++j) {
uint off = j * ms + i;
if ((off % gd) != gmd)
continue;
if (TESTBIT(vumd, off))
continue;
SETBIT(vumd, off);
++cvd->unique_merged;
}
}
cvd->potency = potency(md / gd, cvd->unfixed_count, cvd->unique_merged);
}
/* Find active constraints; absorb into mod_mult where possible.
*/
void cvec_pack(t_context *cx, uint chunksize, double minratio) {
cx->sc_count = 0;
for (uint m = 2; m < cx->nvec; ++m) {
t_cvec *cv = get_if_cvec(cx, m);
if (!cv)
continue;
if (cv->in_mult)
continue;
if (cv->count == m)
fail_402(m);
if (cv->count == m - 1) {
uint last;
for (uint i = 0; i < m; ++i)
if (!TESTBIT(cv->v, i)) {
last = i;
break;
}
fix_cvec(cx, m, last);
continue;
}
uint g = mpz_gcd_ui(NULL, cx->mult, m);
if (g > 1) {
uint gm = mpz_fdiv_ui(cx->mod_mult, g);
char *v = cv->v;
uint uc = 0;
for (uint i = 0; i < m / g; ++i) {
uint vi = i * g + gm;
if (TESTBIT(v, vi))
++uc;
}
cv->unfixed_count = uc;
} else
cv->unfixed_count = cv->count;
memcpy(cv->vum, cv->vu, vecsize(m));
cv->unique_merged = cv->unique_count;
/* using this modulus for a test will trap u / a of the inputs;
* we call it a positive potency of a / (a - u) */
cv->potency = potency(m / g, cv->unfixed_count, cv->unique_count);
if (cv->unique_count)
push_sc(cx, m);
}
/* optimize, combine, sort by potency */
sortcx = cx;
qsort(cx->sc, cx->sc_count, sizeof(uint), &cmp_potency);
for (uint i = 0; i < cx->sc_count; ++i) {
redo_mi: ;
uint mi = cx->sc[i];
for (uint j = i + 1; j < cx->sc_count; ++j) {
uint mj = cx->sc[j];
uint mij = mi * mj / tiny_gcd(mi, mj);
if (mij > chunksize && mij > mi && mij > mj)
continue; /* too big to merge */
/* splice [j] out of the list, then merge them */
splice_sci(cx, j);
if (mi == mij) {
cvec_merge(cx, mi, mj);
} else if (mj == mij) {
cvec_merge(cx, mj, mi);
cx->sc[i] = mj;
goto redo_mi;
} else {
/* FIXME: we should be searching the combined vector for new
* fixed moduli to push to mult/mod_mult, but if we find any
* we'd essentially have to start again, which is a bother.
*/
cvec_merge(cx, mij, mi);
cvec_merge(cx, mij, mj);
cx->sc[i] = mij;
splice_sc(cx, mij, i);
goto redo_mi;
}
}
}
/* sort again */
sortcx = cx;
qsort(cx->sc, cx->sc_count, sizeof(uint), &cmp_potency);
/* find the cutoff */
if (minratio > 1.0)
for (uint i = 0; i < cx->sc_count; ++i) {
t_cvec *cv = cx->vec[ cx->sc[i] ];
if (cv->potency >= minratio)
continue;
cx->sc_count = i;
break;
}
if (debugv)
dump_sc(cx);
}
/* Stores mult/mod_mult into the supplied mpz_t*; returns TRUE if there
* is an effective fixed modulus.
*/
bool cvec_mult(t_context *cx, mpz_t *mod_mult, mpz_t *mult) {
mpz_set(*mod_mult, cx->mod_mult);
mpz_set(*mult, cx->mult);
return mpz_cmp_ui(cx->mult, 1);
}
/* Returns TRUE if v is suppressed by any known constraint, else FALSE.
*/
bool cvec_testv(t_context *cx, mpz_t v) {
for (uint i = 0; i < cx->sc_count; ++i) {
uint m = cx->sc[i];
t_cvec *cv = cx->vec[m];
uint off = mpz_fdiv_ui(v, m);
if (TESTBIT(cv->v, off))
return 0;
}
return 1;
}
bool cvec_test(t_context *cx, mpz_t value, mpz_t *mod, mpz_t *mult) {
mpz_mul(temp, *mult, value);
mpz_add(temp, temp, *mod);
return cvec_testv(cx, temp);
}
bool cvec_test_ui(t_context *cx, ulong value, mpz_t *mod, mpz_t *mult) {
mpz_mul_ui(temp, *mult, value);
mpz_add(temp, temp, *mod);
return cvec_testv(cx, temp);
}
/* Initialize for multiple tests of numbers each of the form d = r_q + a_q v,
* for fixed r_q (mult) and a_q (mod); subsequent calls to cvec_test_prepped()
* pass in v.
* FIXME: if prep finds sc_mult = 0, we can immediately look up whether
* sc_add is suppressed: if it is the whole walk can be aborted; if not,
* we can mark this modulus test to be skipped in cvec_test_prepped.
*/
void cvec_prep_test(t_context *cx, mpz_t *mod, mpz_t *mult) {
for (uint i = 0; i < cx->sc_count; ++i) {
uint m = cx->sc[i];
cx->sc_mult[i] = mpz_fdiv_ui(*mult, m);
cx->sc_add[i] = mpz_fdiv_ui(*mod, m);
}
}
bool cvec_test_ui_prepped(t_context *cx, ulong value) {
for (uint i = 0; i < cx->sc_count; ++i) {
uint m = cx->sc[i];
uint v = value % m;
v = (v * cx->sc_mult[i] + cx->sc_add[i]) % m;
t_cvec *cv = cx->vec[m];
if (TESTBIT(cv->v, v))
return 0;
}
return 1;
}
bool cvec_test_prepped(t_context *cx, mpz_t *value) {
if (mpz_fits_ulong_p(*value))
return cvec_test_ui_prepped(cx, mpz_get_ui(*value));
for (uint i = 0; i < cx->sc_count; ++i) {
uint m = cx->sc[i];
uint v = mpz_fdiv_ui(*value, m);
v = (v * cx->sc_mult[i] + cx->sc_add[i]) % m;
t_cvec *cv = cx->vec[m];
if (TESTBIT(cv->v, v))
return 0;
}
return 1;
}