-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWorkloadGenerator.py
162 lines (136 loc) · 6.29 KB
/
WorkloadGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
'''
Created on Jan 8, 2015
@author: niuzhaojie
'''
from JobGenerator import JobGenerator
class WorkloadGenerator(object):
'''
classdocs
'''
def __init__(self, tracePath, workloadPath, queueWorkloadDict, cluster):
'''
Constructor
'''
self._tracePath = tracePath
self._workloadPath = workloadPath
self._cluster = cluster
self._queues = {}
for k, v in queueWorkloadDict.items():
self._queues[k] = {"traceFile": v, "totalJobs": 0, "submittedJobs": 0, "jobList": []}
#for queue in self._queues.keys():
# self.genWorkload(queue)
def getQueues(self):
return self._queues
def submitJobs(self, currentTime, scheduler):
for k, v in self._queues.items():
while(v["submittedJobs"] < v["totalJobs"] and (v["jobList"][v["submittedJobs"]]).getSubmissionTime() <= currentTime):
job = v["jobList"][v["submittedJobs"]]
v["submittedJobs"] += 1
scheduler.submitJob(job, k)
def allJobsSubmitted(self):
ret = True
for info in self._queues.values():
if info["submittedJobs"] < info["totalJobs"]:
ret = False
break
return ret
def genWorkloadByList(self, queue, jobs):
for job in jobs:
self._queues[queue]["totalJobs"] += 1
self._queues[queue]["jobList"].append(job)
def genWorkloadByScale(self, queue, scale = 1):
fileName = self._workloadPath + self._queues[queue]["traceFile"]
f = open(fileName, "r")
lines = f.readlines()
f.close()
jobCount = 0
for line in lines:
items = line.split(",")
numOfTask = int(items[0])
taskExecTime = int(items[1])
submissionTime = int(items[2])
memory = int(items[3])
cpu = int(items[4])
disk = int(items[5])
network = int(items[6])
for i in range(scale):
jobID = jobCount + 1
jobCount += 1
job = JobGenerator.genComputeIntensitveJob(str(jobID), numOfTask, memory, cpu, disk, network, taskExecTime, submissionTime)
if job != None:
self._queues[queue]["totalJobs"] += 1
self._queues[queue]["jobList"].append(job)
def genWorkloadByDistribution(self, queue, dist):
fileName = self._workloadPath + self._queues[queue]["traceFile"]
f = open(fileName, "r")
lines = f.readlines()
f.close()
jobCount = 0
jobResVector = []
for i in range(len(dist)):
num = dist[i]
for j in range(num):
line = lines[i]
items = line.split(",")
numOfTask = int(items[0])
taskExecTime = int(items[1])
submissionTime = int(items[2])
memory = int(items[3])
cpu = int(items[4])
disk = int(items[5])
network = int(items[6])
jobCount += 1
job = JobGenerator.genComputeIntensitveJob(str(jobCount), numOfTask, memory, cpu, disk, network, taskExecTime, submissionTime)
jobResVector.append(job.getResourceVector())
if job!= None:
self._queues[queue]["totalJobs"] += 1
self._queues[queue]["jobList"].append(job)
return jobResVector
def genWorkload(self, queue):
#fileName = self._tracePath + self._queues[queue]["traceFile"]
fileName = self._workloadPath + self._queues[queue]["traceFile"]
f = open(fileName, "r")
lines = f.readlines()
job = None
for line in lines:
items = line.split(",")
# 1. genComputeIntensitveJob(jobID, numOfTask, memory, cpu, disk, network, execTime, submissionTime)
# 2. genMapOnlyJob(jobID, inputFile, memory, cpu, disk, network, submissionTime)
# 3. genMapReduceJob(jobID, inputFile, mapMemory, mapCPU, mapDisk, mapNetwork, numOfReduce, redMemory, redCPU, redDisk, redNetwork, submissionTime)
if items[0] == "compute":
jobID = queue + "-" + str(self._queues[queue]["totalJobs"]) + "-compute"
numOfTask = int(items[1])
memory = int(items[2])
cpu = int(items[3])
disk = int(items[4])
network = int(items[5])
execTime = int(items[6])
submissionTime = int(items[7])
job = JobGenerator.genComputeIntensitveJob(jobID, numOfTask, memory, cpu, disk, network, execTime, submissionTime)
elif items[0] == "map":
jobID = queue + "-" + str(self._queues[queue]["totalJobs"]) + "-map"
inputFile = self._cluster.getFile(items[1])
memory = int(items[2])
cpu = int(items[3])
disk = int(items[4])
network = int(items[5])
submissionTime = int(items[6])
job = JobGenerator.genMapOnlyJob(jobID, inputFile, memory, cpu, disk, network, submissionTime)
elif items[0] == "mapReduce":
jobID = queue + "-" + str(self._queues[queue]["totalJobs"]) + "-mapreduce"
inputFile = self._cluster.getFile(items[1])
mapMemory = int(items[2])
mapCPU = int(items[3])
mapDisk = int(items[4])
mapNetwork = int(items[5])
numOfReduce = int(items[6])
redMemory = int(items[7])
redCPU = int(items[8])
redDisk = int(items[9])
redNetwork = int(items[10])
submissionTime = int(items[11])
job = JobGenerator.genMapReduceJob(jobID, inputFile, mapMemory, mapCPU, mapDisk, mapNetwork, numOfReduce, redMemory, redCPU, redDisk, redNetwork, submissionTime)
if job != None:
self._queues[queue]["totalJobs"] += 1
self._queues[queue]["jobList"].append(job)
f.close()