@@ -314,11 +314,12 @@ def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_di
314314 for x , y in zip (modifier_token_id , args .modifier_token ):
315315 learned_embeds_dict = {}
316316 learned_embeds_dict [y ] = learned_embeds [x ]
317- filename = f"{ output_dir } /{ y } .bin"
318317
319318 if safe_serialization :
319+ filename = f"{ output_dir } /{ y } .safetensors"
320320 safetensors .torch .save_file (learned_embeds_dict , filename , metadata = {"format" : "pt" })
321321 else :
322+ filename = f"{ output_dir } /{ y } .bin"
322323 torch .save (learned_embeds_dict , filename )
323324
324325
@@ -1040,17 +1041,22 @@ def main(args):
10401041 )
10411042
10421043 # Scheduler and math around the number of training steps.
1043- overrode_max_train_steps = False
1044- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
1044+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
1045+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
10451046 if args .max_train_steps is None :
1046- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1047- overrode_max_train_steps = True
1047+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
1048+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
1049+ num_training_steps_for_scheduler = (
1050+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
1051+ )
1052+ else :
1053+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
10481054
10491055 lr_scheduler = get_scheduler (
10501056 args .lr_scheduler ,
10511057 optimizer = optimizer ,
1052- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
1053- num_training_steps = args . max_train_steps * accelerator . num_processes ,
1058+ num_warmup_steps = num_warmup_steps_for_scheduler ,
1059+ num_training_steps = num_training_steps_for_scheduler ,
10541060 )
10551061
10561062 # Prepare everything with our `accelerator`.
@@ -1065,8 +1071,14 @@ def main(args):
10651071
10661072 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
10671073 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
1068- if overrode_max_train_steps :
1074+ if args . max_train_steps is None :
10691075 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1076+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
1077+ logger .warning (
1078+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
1079+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
1080+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
1081+ )
10701082 # Afterwards we recalculate our number of training epochs
10711083 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
10721084
0 commit comments