Skip to content

Commit c6d3832

Browse files
committed
Use T5Tokenizer instead of MT5Tokenizer
Given that the `MT5Tokenizer` in `transformers` is just a "re-export" of `T5Tokenizer` as per https://github.com/huggingface/transformers/blob/v4.57.3/src/transformers/models/mt5/tokenization_mt5.py )on latest available stable Transformers i.e., v4.57.3), this commit updates the imports to point to `T5Tokenizer` instead, so that those still work with Transformers v5.0.0rc0 onwards.
1 parent 262ce19 commit c6d3832

File tree

4 files changed

+12
-12
lines changed

4 files changed

+12
-12
lines changed

examples/community/pipeline_hunyuandit_differential_img2img.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,8 +21,8 @@
2121
BertModel,
2222
BertTokenizer,
2323
CLIPImageProcessor,
24-
MT5Tokenizer,
2524
T5EncoderModel,
25+
T5Tokenizer,
2626
)
2727

2828
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
@@ -260,7 +260,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
260260
The HunyuanDiT model designed by Tencent Hunyuan.
261261
text_encoder_2 (`T5EncoderModel`):
262262
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
263-
tokenizer_2 (`MT5Tokenizer`):
263+
tokenizer_2 (`T5Tokenizer`):
264264
The tokenizer for the mT5 embedder.
265265
scheduler ([`DDPMScheduler`]):
266266
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -295,7 +295,7 @@ def __init__(
295295
feature_extractor: CLIPImageProcessor,
296296
requires_safety_checker: bool = True,
297297
text_encoder_2=T5EncoderModel,
298-
tokenizer_2=MT5Tokenizer,
298+
tokenizer_2=T5Tokenizer,
299299
):
300300
super().__init__()
301301

src/diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
import numpy as np
1919
import torch
20-
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
20+
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
2121

2222
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
2323

@@ -185,7 +185,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
185185
The HunyuanDiT model designed by Tencent Hunyuan.
186186
text_encoder_2 (`T5EncoderModel`):
187187
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
188-
tokenizer_2 (`MT5Tokenizer`):
188+
tokenizer_2 (`T5Tokenizer`):
189189
The tokenizer for the mT5 embedder.
190190
scheduler ([`DDPMScheduler`]):
191191
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -229,7 +229,7 @@ def __init__(
229229
HunyuanDiT2DMultiControlNetModel,
230230
],
231231
text_encoder_2: Optional[T5EncoderModel] = None,
232-
tokenizer_2: Optional[MT5Tokenizer] = None,
232+
tokenizer_2: Optional[T5Tokenizer] = None,
233233
requires_safety_checker: bool = True,
234234
):
235235
super().__init__()

src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
import numpy as np
1919
import torch
20-
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
20+
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
2121

2222
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
2323

@@ -169,7 +169,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
169169
The HunyuanDiT model designed by Tencent Hunyuan.
170170
text_encoder_2 (`T5EncoderModel`):
171171
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
172-
tokenizer_2 (`MT5Tokenizer`):
172+
tokenizer_2 (`T5Tokenizer`):
173173
The tokenizer for the mT5 embedder.
174174
scheduler ([`DDPMScheduler`]):
175175
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -204,7 +204,7 @@ def __init__(
204204
feature_extractor: CLIPImageProcessor,
205205
requires_safety_checker: bool = True,
206206
text_encoder_2: Optional[T5EncoderModel] = None,
207-
tokenizer_2: Optional[MT5Tokenizer] = None,
207+
tokenizer_2: Optional[T5Tokenizer] = None,
208208
):
209209
super().__init__()
210210

src/diffusers/pipelines/pag/pipeline_pag_hunyuandit.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
import numpy as np
1919
import torch
20-
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
20+
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
2121

2222
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
2323

@@ -173,7 +173,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
173173
The HunyuanDiT model designed by Tencent Hunyuan.
174174
text_encoder_2 (`T5EncoderModel`):
175175
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
176-
tokenizer_2 (`MT5Tokenizer`):
176+
tokenizer_2 (`T5Tokenizer`):
177177
The tokenizer for the mT5 embedder.
178178
scheduler ([`DDPMScheduler`]):
179179
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -208,7 +208,7 @@ def __init__(
208208
feature_extractor: Optional[CLIPImageProcessor] = None,
209209
requires_safety_checker: bool = True,
210210
text_encoder_2: Optional[T5EncoderModel] = None,
211-
tokenizer_2: Optional[MT5Tokenizer] = None,
211+
tokenizer_2: Optional[T5Tokenizer] = None,
212212
pag_applied_layers: Union[str, List[str]] = "blocks.1", # "blocks.16.attn1", "blocks.16", "16", 16
213213
):
214214
super().__init__()

0 commit comments

Comments
 (0)