This repository has been archived by the owner on Oct 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 34
/
train.py
336 lines (283 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
import os
import sys
import glob
import argparse
import random
from collections import defaultdict
from util.Data import DataLoader, LossSaver
from math import ceil
eps = 0.001
"""
ARGS
"""
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=32, type=int, help='Batch size (default:32)')
parser.add_argument('--cycle', default=-1, type=int, help='Cycle (default:-1)')
parser.add_argument('--data_paths', default=[], nargs='*', help='Training data paths (default: empty list)')
parser.add_argument('--early_stopping', default=False, help='Use early stopping', action='store_true')
parser.add_argument('--early_stopping_patience', default=10, type=int, help='Early stopping patience (default:10)')
parser.add_argument('--epochs', default=10, type=int, help='Training epochs (default:10)')
parser.add_argument('--ewc', default=False, help='Elastic weight consolidation (default:False)', action='store_true')
parser.add_argument('--ewc_lambda', default=1, type=float, help='Elastic weight consolidation importance parameter(default:1)')
parser.add_argument('--last_nfiles', default=1, type=int, help='Use last n files in training only (default:1, -1 for all)')
parser.add_argument('--min_iters', default=-1, type=int, help='Min training iterations (default:-1, negative for unlimited)')
parser.add_argument('--max_iters', default=-1, type=int, help='Max training iterations (default:-1, negative for unlimited)')
parser.add_argument('--new', default=False, help='Create a new model instead of training the old one', action='store_true')
parser.add_argument('--validation', default=False, help='Validation set (default:False)', action='store_true')
parser.add_argument('--val_episodes', default=0, type=float, help='Number of validation episodes (default:0)')
parser.add_argument('--val_mode', default=0, type=int, help='Validation mode (0: random, 1:episodic, default:0)')
parser.add_argument('--val_set_size', default=0.05, type=float, help='Validation set size (fraction of total) (default:0.05)')
parser.add_argument('--val_set_size_max', default=-1, type=int, help='Maximum validation set size (default:-1, negative for unlimited)')
parser.add_argument('--val_total', default=25, type=int, help='Total number of validations (default:25)')
parser.add_argument('--save_loss', default=False, help='Save loss history', action='store_true')
parser.add_argument('--save_interval', default=100, type=int, help='Number of iterations between save_loss')
parser.add_argument('--td', default=False, help='Temporal difference update', action='store_true')
parser.add_argument('--weighted', default=False, help='Weighted loss', action='store_true')
parser.add_argument('--weighted_mode', default=0, type=int, help='0: inverse of variance, 1: number of visits')
args = parser.parse_args()
batch_size = args.batch_size
cycle = args.cycle
early_stopping = args.early_stopping
early_stopping_patience = args.early_stopping_patience
epochs = args.epochs
ewc = args.ewc
ewc_lambda = args.ewc_lambda
last_nfiles = args.last_nfiles
min_iters = args.min_iters
max_iters = args.max_iters
new = args.new
validation = args.validation
val_episodes = args.val_episodes
val_mode = args.val_mode
val_set_size = args.val_set_size
val_set_size_max = args.val_set_size_max
val_total = args.val_total
save_loss = args.save_loss
save_interval = args.save_interval
td = args.td
weighted = args.weighted
weighted_mode = args.weighted_mode
#========================
"""
LOAD DATA
"""
list_of_data = []
for path in args.data_paths:
list_of_data += glob.glob(path)
list_of_data.sort(key=os.path.getmtime)
if last_nfiles > 0:
list_of_data = list_of_data[-last_nfiles:]
if len(list_of_data) == 0:
raise Exception('list_of_data is empty.')
loader = DataLoader(list_of_data)
if td:
if eligibility_trace:
_child_stats = loader.child_stats
n = _child_stats[:,0]
q = _child_stats[:,3]
_episode = loader.episode
_score = loader.score
_v = np.sum(n * q, axis=1) / np.sum(n, axis=1)
values = np.zeros(_v.shape)
for idx, ep in enumerate(_episode):
idx_r = idx
weight = 1.0
_sum = 0
_weight_sum = 0
while idx_r < len(_episode) and _episode[idx_r] == _episode[idx] :
_sum += weight * ( _score[idx_r] + _v[idx_r] - _score[idx] )
_weight_sum += weight
idx_r += 1
weight *= eligibility_trace_lambda
values[idx] = _sum / _weight_sum
weights = np.ones(values.shape)
else:
values = loader.value
variance = loader.variance
if weighted:
if weighted_mode == 0:
weights = 1 / (variance + eps)
elif weighted_mode == 1:
weights = np.sum(loader.child_stats[:, 0], axis=1)
weights = weights / np.average(weights)
elif weighted_mode == 2:
weights = np.sum(loader.child_stats[:, 0], axis=1)
weights = weights / np.average(weights)
weights = weights / (variance + eps)
else:
weights = np.ones(values.shape)
else:
values = np.zeros((len(loader.score), ), dtype=np.float32)
idx = 0
while idx < len(loader.episode):
for idx_end in range(idx, len(loader.episode)):
if loader.episode[idx] != loader.episode[idx_end]:
idx_end -= 1
break
ep_score = loader.score[idx_end]
for _i in range(idx, idx_end+1):
values[_i] = ep_score - loader.score[_i]
idx = idx_end + 1
variance = loader.variance
weights = np.ones(values.shape)
if backend == 'pytorch':
states = loader.board
policy = loader.policy
def gen_batch(idx):
return (np.expand_dims(states[idx], 1).astype(np.float32, copy=False),
np.expand_dims(values[idx], -1).astype(np.float32, copy=False),
np.expand_dims(variance[idx], -1).astype(np.float32, copy=False),
policy[idx].astype(np.float32, copy=False),
np.expand_dims(weights[idx], -1).astype(np.float32, copy=False))
#=========================
"""
VALIDATION SET
"""
if validation:
if val_mode == 0:
if val_set_size <= 0:
t_idx = list(range(len(states)))
v_idx = []
elif val_set_size >= 1:
t_idx = []
v_idx = list(range(len(states)))
else:
n_val_data = int(len(states) * val_set_size)
if val_set_size_max > 0:
v_idx = np.random.choice(len(states), size=min(n_val_data, val_set_size_max), replace=False)
else:
v_idx = np.random.choice(len(states), size=n_val_data, replace=False)
t_idx = [x for x in range(len(states)) if x not in v_idx]
elif val_mode == 1:
if val_episodes <= 0:
t_idx = list(range(len(states)))
v_idx = []
else:
v_idx = np.where(loader.episode < val_episodes + 1)[0]
if val_set_size_max > 0:
idx = np.random.choice(v_idx[0], size=min(len(v_idx[0]), val_set_size_max), replace=False)
v_idx = v_idx[0][idx]
t_idx = np.where(loader.episode >= val_episodes + 1)[0]
else:
t_idx = list(range(len(states)))
n_data = len(t_idx)
#=========================
"""
MODEL SETUP
"""
if backend == 'pytorch':
from model.model_pytorch import Model
m = Model(training=True, weighted=weighted, ewc=ewc, ewc_lambda=ewc_lambda)
if not new:
m.load()
train_step = lambda batch, step: m.train(batch)
compute_loss = lambda batch: m.compute_loss(batch)
scheduler_step = lambda **kwargs: m.update_scheduler(**kwargs)
#=========================
iters_per_epoch = n_data//batch_size
iters = int(epochs * iters_per_epoch)
if max_iters >= 0:
iters = int(min(iters, max_iters))
if min_iters >= 0:
iters = int(max(iters, min_iters))
val_interval = iters // val_total + 1
if save_loss:
#loss/loss_v/loss_var/loss_p
hist_shape = (int(ceil(iters/save_interval)), 9)
loss_history = np.empty(hist_shape)
#=========================
"""
TRAINING ITERATION
"""
loss_ma = 0
decay = 0.99
def loss_by_chunk(idx, chunksize=1000):
loss = [0] * 5
val_idx = 0
length = len(idx)
while val_idx < length:
if val_idx + chunksize < length:
idx_s = idx[val_idx:val_idx+chunksize]
else:
idx_s = idx[val_idx:]
b_val = gen_batch(idx_s)
_loss = compute_loss(b_val)
for i in range(5):
loss[i] += len(b_val[0]) * _loss[i] / length
val_idx += chunksize
return loss
if early_stopping:
if not validation or len(v_idx) == 0:
raise Exception('Early stopping without validation?')
loss_val_best = float('inf')
_epoch = 0
_p = 0
sys.stdout.write('\n')
loss_history = []
while _p < early_stopping_patience:
loss_avg = defaultdict(float)
for i in range(iters_per_epoch):
batch = gen_batch(np.random.choice(t_idx, size=batch_size))
_loss = train_step(batch, i)
for k in _loss:
loss_avg[k] += _loss[k]
for k in _loss:
loss_avg[k] /= iters_per_epoch
_epoch += 1
loss_val = compute_loss(gen_batch(v_idx))
scheduler_step(metrics=loss_val)
if loss_val['loss'] < loss_val_best:
loss_val_best = loss_val['loss']
_p = 0
m.save(verbose=False)
suffix = ' <----- current model '
else:
_p += 1
suffix = ''
print('epoch:%d loss: %.5f/(%.5f±%.5f) %s' %(_epoch, loss_avg['loss'], loss_val['loss'], loss_val['loss_std'] / len(v_idx) ** 0.5,suffix), flush=True)
if save_loss:
loss_history.append([
loss_avg['loss'],
loss_avg['loss_v'],
loss_avg['loss_var'],
loss_avg['loss_p'],
loss_val['loss'],
loss_val['loss_v'],
loss_val['loss_var'],
loss_val['loss_p'],
loss_val['loss_ewc']])
loss_history = np.array(loss_history)
else:
for i in range(iters):
batch = gen_batch(np.random.choice(t_idx, size=batch_size))
if validation and i % val_interval == 0:
loss_val = compute_loss(gen_batch(v_idx))
scheduler_step(metrics=loss_val['loss'])
sys.stdout.write('\n')
loss = train_step(batch,i)
loss_ma = decay * loss_ma + ( 1 - decay ) * loss['loss']
print('iter:%d/%d loss: %.5f/%.5f(%.5f)'%(i+1,iters,loss_ma,loss_val['loss'], loss_val['loss_std']), end='\r', flush=True)
if save_loss and i % save_interval == 0:
_idx = i // save_interval
loss_history[_idx] = (
loss_avg['loss'],
loss_avg['loss_v'],
loss_avg['loss_var'],
loss_avg['loss_p'],
loss_val['loss'],
loss_val['loss_v'],
loss_val['loss_var'],
loss_val['loss_p'],
loss_val['loss_ewc'])
if ewc:
m.compute_fisher(batch_train)
print(flush=True)
if not early_stopping:
m.save()
if save_loss:
loss_saver = LossSaver(cycle)
loss_saver.add(loss_history)
loss_saver.close()
sys.stdout.write('\n')
sys.stdout.flush()