|
| 1 | +import itertools |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from bokeh.models import LinearColorMapper |
| 5 | +from bokeh.palettes import Category10_10 as catpalette |
| 6 | +from bokeh.palettes import Viridis256 as palette |
| 7 | +from bokeh.plotting import figure |
| 8 | +from bokeh.transform import factor_cmap |
| 9 | + |
| 10 | +from nanomesh import Image, metrics |
| 11 | + |
| 12 | + |
| 13 | +def image_plot(data): |
| 14 | + if isinstance(data, Image): |
| 15 | + data = data.image |
| 16 | + |
| 17 | + fig = figure(tooltips=[('x', '$x'), ('y', '$y'), ('value', '@image')], |
| 18 | + match_aspect=True, |
| 19 | + border_fill_alpha=0.0, |
| 20 | + height=300) |
| 21 | + |
| 22 | + fig.x_range.range_padding = fig.y_range.range_padding = 0 |
| 23 | + |
| 24 | + dw, dh = data.shape |
| 25 | + |
| 26 | + # must give a vector of image data for image parameter |
| 27 | + fig.image(image=[data], |
| 28 | + x=0, |
| 29 | + y=0, |
| 30 | + dw=dw, |
| 31 | + dh=dh, |
| 32 | + palette='Viridis11', |
| 33 | + level='image') |
| 34 | + fig.grid.grid_line_width = 0.5 |
| 35 | + return fig |
| 36 | + |
| 37 | + |
| 38 | +def contour_mesh(mesher): |
| 39 | + fig = figure(title='Line Mesh', |
| 40 | + tooltips=[('x', '$x'), ('y', '$y'), ('value', '@image')], |
| 41 | + match_aspect=True, |
| 42 | + border_fill_alpha=0.0) |
| 43 | + |
| 44 | + c = mesher.contour |
| 45 | + |
| 46 | + vert_x, vert_y = c.points.T |
| 47 | + |
| 48 | + colors = itertools.cycle(catpalette) |
| 49 | + |
| 50 | + for i in np.unique(c.cell_data['segment_markers']): |
| 51 | + color = next(colors) |
| 52 | + mask = c.cell_data['segment_markers'] != i |
| 53 | + |
| 54 | + if mask is not None: |
| 55 | + cells = c.cells[~mask.squeeze()] |
| 56 | + |
| 57 | + lines_x = (vert_x[cells] + 0.5).tolist() |
| 58 | + lines_y = (vert_y[cells] + 0.5).tolist() |
| 59 | + |
| 60 | + fig.multi_line(lines_y, |
| 61 | + lines_x, |
| 62 | + legend_label=f'{i}', |
| 63 | + line_width=5, |
| 64 | + color=color) |
| 65 | + |
| 66 | + fig.hover.point_policy = 'follow_mouse' |
| 67 | + |
| 68 | + # image |
| 69 | + d = mesher.image |
| 70 | + |
| 71 | + fig.x_range.range_padding = fig.y_range.range_padding = 0 |
| 72 | + |
| 73 | + dw, dh = d.shape |
| 74 | + # must give a vector of image data for image parameter |
| 75 | + fig.image(image=[d], |
| 76 | + x=0, |
| 77 | + y=0, |
| 78 | + dw=dw, |
| 79 | + dh=dh, |
| 80 | + palette='Viridis11', |
| 81 | + level='image') |
| 82 | + fig.grid.grid_line_width = 0.0 |
| 83 | + return fig |
| 84 | + |
| 85 | + |
| 86 | +def get_meshplot(mesh): |
| 87 | + fig = figure(title='Meshplot', |
| 88 | + tooltips=[('Physical', '@physical'), ('(x, y)', '($x, $y)'), |
| 89 | + ('index', '$index')], |
| 90 | + x_axis_label='x', |
| 91 | + y_axis_label='y', |
| 92 | + match_aspect=True) |
| 93 | + |
| 94 | + color_mapper = LinearColorMapper(palette=palette) |
| 95 | + |
| 96 | + xs = mesh.points[mesh.cells][:, :, 0] |
| 97 | + ys = mesh.points[mesh.cells][:, :, 1] |
| 98 | + cs = mesh.cell_data['physical'] |
| 99 | + |
| 100 | + data = { |
| 101 | + 'x': xs.tolist(), |
| 102 | + 'y': ys.tolist(), |
| 103 | + 'physical': |
| 104 | + tuple(mesh.number_to_field.get(val, str(val)) for val in cs) |
| 105 | + } |
| 106 | + |
| 107 | + factors = tuple(reversed(mesh.fields)) |
| 108 | + |
| 109 | + fig.patches( |
| 110 | + 'x', |
| 111 | + 'y', |
| 112 | + source=data, |
| 113 | + # line_color='white', |
| 114 | + fill_color=factor_cmap('physical', palette=catpalette, |
| 115 | + factors=factors), |
| 116 | + fill_alpha=0.7, |
| 117 | + line_width=1) |
| 118 | + fig.hover.point_policy = 'follow_mouse' |
| 119 | + |
| 120 | + return fig |
| 121 | + |
| 122 | + |
| 123 | +def get_metric_hist(mesh, metric): |
| 124 | + metric_vals = getattr(metrics, metric)(mesh) |
| 125 | + |
| 126 | + hist, edges = np.histogram(metric_vals, bins=50) |
| 127 | + |
| 128 | + fig = figure( |
| 129 | + title=f'Histogram of triangle {metric}', |
| 130 | + x_axis_label=f'Triangle {metric}', |
| 131 | + y_axis_label='Frequency', |
| 132 | + tooltips=[ |
| 133 | + ('value', '@top'), |
| 134 | + ], |
| 135 | + ) |
| 136 | + fig.quad(top=hist, |
| 137 | + bottom=0, |
| 138 | + left=edges[:-1], |
| 139 | + right=edges[1:], |
| 140 | + fill_color='navy', |
| 141 | + line_color='white', |
| 142 | + alpha=0.5) |
| 143 | + fig.hover.point_policy = 'follow_mouse' |
| 144 | + |
| 145 | + return fig |
| 146 | + |
| 147 | + |
| 148 | +def get_metric_2dplot(mesh, metric): |
| 149 | + metric_vals = getattr(metrics, metric)(mesh) |
| 150 | + |
| 151 | + color_mapper = LinearColorMapper(palette=palette) |
| 152 | + |
| 153 | + fig = figure(title=f'Triplot of triangle {metric}', |
| 154 | + tooltips=[('Physical', '@physical'), |
| 155 | + (metric.capitalize(), f'@{metric}'), |
| 156 | + ('(x, y)', '($x, $y)')], |
| 157 | + x_axis_label='x', |
| 158 | + y_axis_label='y', |
| 159 | + match_aspect=True) |
| 160 | + |
| 161 | + xs = mesh.points[mesh.cells][:, :, 0] |
| 162 | + ys = mesh.points[mesh.cells][:, :, 1] |
| 163 | + |
| 164 | + cs = mesh.cell_data['physical'] |
| 165 | + |
| 166 | + data = { |
| 167 | + 'x': xs.tolist(), |
| 168 | + 'y': ys.tolist(), |
| 169 | + 'label': cs.tolist(), |
| 170 | + metric: metric_vals.tolist(), |
| 171 | + } |
| 172 | + |
| 173 | + fig.patches('x', |
| 174 | + 'y', |
| 175 | + source=data, |
| 176 | + fill_color={ |
| 177 | + 'field': metric, |
| 178 | + 'transform': color_mapper |
| 179 | + }, |
| 180 | + line_width=1) |
| 181 | + fig.hover.point_policy = 'follow_mouse' |
| 182 | + |
| 183 | + return fig |
0 commit comments