|
| 1 | +import os |
| 2 | +import math |
| 3 | +import torch |
| 4 | +import random |
| 5 | +import argparse |
| 6 | +import numpy as np |
| 7 | +import torch.nn.functional as F |
| 8 | +import torch_geometric.transforms as T |
| 9 | +from torch_geometric.nn import GCNConv |
| 10 | +from torch_geometric.datasets import Reddit |
| 11 | +from torch_geometric.data.storage import GlobalStorage |
| 12 | +from torch_geometric.data.data import DataEdgeAttr, DataTensorAttr |
| 13 | + |
| 14 | + |
| 15 | +torch.serialization.add_safe_globals([GlobalStorage, DataEdgeAttr, DataTensorAttr]) |
| 16 | + |
| 17 | + |
| 18 | +def set_seed(seed): |
| 19 | + random.seed(seed) |
| 20 | + np.random.seed(seed) |
| 21 | + torch.manual_seed(seed) |
| 22 | + torch.cuda.manual_seed_all(seed) |
| 23 | + |
| 24 | + |
| 25 | +def create_parser(): |
| 26 | + parser = argparse.ArgumentParser() |
| 27 | + parser.add_argument("--seed", type=int, default=0) |
| 28 | + parser.add_argument("--download_path", type=str) |
| 29 | + parser.add_argument("--num_epochs", type=int, default=2) |
| 30 | + return parser |
| 31 | + |
| 32 | + |
| 33 | +def get_dataset(download_path=None): |
| 34 | + # dataset = Reddit(download_path, transform=T.NormalizeFeatures()) |
| 35 | + # dataset = PygNodePropPredDataset(name="ogbn-products", root=input_dir, transform=T.NormalizeFeatures()) |
| 36 | + # gcn_norm = T.GCNNorm() |
| 37 | + # return (gcn_norm.forward(dataset[0]), dataset.num_classes) |
| 38 | + return torch.load(download_path) |
| 39 | + |
| 40 | + |
| 41 | +class Net(torch.nn.Module): |
| 42 | + def __init__(self, num_input_features, num_classes): |
| 43 | + super(Net, self).__init__() |
| 44 | + |
| 45 | + self.conv1 = GCNConv(num_input_features, 128, normalize=False, bias=False) |
| 46 | + self.conv2 = GCNConv(128, 128, normalize=False, bias=False) |
| 47 | + self.conv3 = GCNConv(128, num_classes, normalize=False, bias=False) |
| 48 | + |
| 49 | + torch.nn.init.kaiming_uniform_(self.conv1.lin.weight, a=math.sqrt(5)) |
| 50 | + torch.nn.init.kaiming_uniform_(self.conv2.lin.weight, a=math.sqrt(5)) |
| 51 | + torch.nn.init.kaiming_uniform_(self.conv3.lin.weight, a=math.sqrt(5)) |
| 52 | + |
| 53 | + def forward(self, x, edge_index): |
| 54 | + x = self.conv1(x, edge_index) |
| 55 | + x = F.relu(x) |
| 56 | + x = self.conv2(x, edge_index) |
| 57 | + x = F.relu(x) |
| 58 | + x = self.conv3(x, edge_index) |
| 59 | + return x |
| 60 | + |
| 61 | + |
| 62 | +def train(model, optimizer, input_features, adj, labels): |
| 63 | + model.train() |
| 64 | + |
| 65 | + optimizer.zero_grad() |
| 66 | + |
| 67 | + output = model(input_features, adj) |
| 68 | + |
| 69 | + loss = F.cross_entropy(output, labels) |
| 70 | + |
| 71 | + loss.backward() |
| 72 | + |
| 73 | + optimizer.step() |
| 74 | + |
| 75 | + return loss |
| 76 | + |
| 77 | + |
| 78 | +if __name__ == "__main__": |
| 79 | + parser = create_parser() |
| 80 | + args = parser.parse_args() |
| 81 | + set_seed(args.seed) |
| 82 | + |
| 83 | + data, num_classes = get_dataset(args.download_path) |
| 84 | + num_input_features = data.x.shape[1] |
| 85 | + |
| 86 | + data.y = data.y.type(torch.LongTensor) |
| 87 | + data.y = data.y.to(torch.device("cuda")) |
| 88 | + |
| 89 | + features_local = data.x.to(torch.device("cuda")).requires_grad_() |
| 90 | + |
| 91 | + model = Net(num_input_features, num_classes).to(torch.device("cuda")) |
| 92 | + |
| 93 | + optimizer = torch.optim.AdamW( |
| 94 | + list(model.parameters()) + [features_local], lr=3e-3, weight_decay=0 |
| 95 | + ) |
| 96 | + |
| 97 | + adj = torch.sparse_coo_tensor( |
| 98 | + data.edge_index, data.edge_weight, (data.x.shape[0], data.x.shape[0]) |
| 99 | + ) |
| 100 | + adj = adj.to_sparse_csr() |
| 101 | + adj = adj.to(torch.device("cuda")) |
| 102 | + |
| 103 | + losses = [] |
| 104 | + for i in range(args.num_epochs): |
| 105 | + loss = train(model, optimizer, features_local, adj, data.y) |
| 106 | + losses.append(loss.item()) |
| 107 | + log = "Epoch: {:03d}, Train Loss: {:.4f}" |
| 108 | + print(log.format(i, loss)) |
0 commit comments