-
Notifications
You must be signed in to change notification settings - Fork 12
/
diff_vof_replaced.py
612 lines (511 loc) · 24.4 KB
/
diff_vof_replaced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import taichi as ti
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import argparse
import os
import flow_visualization as fv
ti.init(arch=ti.cpu, default_fp=ti.f32, debug=False, device_memory_fraction=0.9) # Set default fp so that float=ti.f32
parser = argparse.ArgumentParser() # Get the initial condition
# 1 - Dam Break; 2 - Rising Bubble; 3 - Droping liquid
parser.add_argument('-ic', type=int, choices=[1, 2, 3], default=1)
parser.add_argument('-s', action='store_true')
args = parser.parse_args()
initial_condition = args.ic
SAVE_FIG = args.s
nx = 80 # Number of grid points in the x direction
ny = 80 # Number of grid points in the y direction
Lx = 0.1 # The length of the domain
Ly = 0.1 # The width of the domain
rho_l = 1000.0
rho_g = 50.0
nu_l = 1.0e-6 # kinematic viscosity, nu = mu / rho
nu_g = 1.5e-5
sigma = ti.field(dtype=float, shape=())
sigma[None] = 0.007
gx = 0
gy = -1000
dt = 4e-6 # Use smaller dt for higher density ratio
eps = 1e-6 # Threshold used in vfconv and f post processings
MAX_TIME_STEPS = 1000
MAX_ITER = 20
OPT_ITER = 100
learning_rate = 0.02
# Mesh information
imin = 1
imax = imin + nx - 1
jmin = 1
jmax = jmin + ny - 1
x = ti.field(float, shape=imax + 3)
y = ti.field(float, shape=jmax + 3)
xnp = np.hstack((0.0, np.linspace(0, Lx, nx + 1), Lx)).astype(np.float32) # [0, 0, ... 1, 1]
x.from_numpy(xnp)
ynp = np.hstack((0.0, np.linspace(0, Ly, ny + 1), Ly)).astype(np.float32) # [0, 0, ... 1, 1]
y.from_numpy(ynp)
dx = x[imin + 2] - x[imin + 1]
dy = y[jmin + 2] - y[jmin + 1]
dxi = 1 / dx
dyi = 1 / dy
# Field shapes
field_shape = (imax + 2, jmax + 2, MAX_TIME_STEPS)
# p_shape = (imax + 2, jmax + 2, MAX_TIME_STEPS * (MAX_ITER + 1))
p_shape = (imax + 2, jmax + 2, MAX_TIME_STEPS)
# Variables for VOF function
F = ti.field(float, shape=(imax + 2, jmax + 2, 2 * MAX_TIME_STEPS + 1), needs_grad=True)
Ftd_x = ti.field(float, shape=field_shape, needs_grad=True)
Ftd_y = ti.field(float, shape=field_shape, needs_grad=True)
Ftarget = ti.field(float, shape=(field_shape[0], field_shape[1]), needs_grad=True)
loss = ti.field(float, shape=(), needs_grad=True)
ax = ti.field(float, shape=field_shape, needs_grad=True)
ay = ti.field(float, shape=field_shape, needs_grad=True)
cx = ti.field(float, shape=field_shape, needs_grad=True)
cy = ti.field(float, shape=field_shape, needs_grad=True)
rp_x = ti.field(float, shape=field_shape, needs_grad=True)
rm_x = ti.field(float, shape=field_shape, needs_grad=True)
rp_y = ti.field(float, shape=field_shape, needs_grad=True)
rm_y = ti.field(float, shape=field_shape, needs_grad=True)
# Variables for N-S equation
u = ti.field(float, shape=field_shape, needs_grad=True)
v = ti.field(float, shape=field_shape, needs_grad=True)
u_star = ti.field(float, shape=field_shape, needs_grad=True)
v_star = ti.field(float, shape=field_shape, needs_grad=True)
# Pressure field shape should be different
p = ti.field(float, shape=p_shape, needs_grad=True)
p_tmp = ti.field(float, shape=(p_shape[0], p_shape[1]), needs_grad=False)
rhs = ti.field(float, shape=field_shape, needs_grad=True)
rhs_tmp = ti.field(float, shape=(field_shape[0], field_shape[1]), needs_grad=False)
rho = ti.field(float, shape=field_shape, needs_grad=True)
nu = ti.field(float, shape=field_shape, needs_grad=True)
V = ti.Vector.field(2, dtype=float, shape=(field_shape[0], field_shape[1])) # For displaying velocity field
# Variables for interface reconstruction
mx1 = ti.field(float, shape=field_shape, needs_grad=True)
my1 = ti.field(float, shape=field_shape, needs_grad=True)
mx2 = ti.field(float, shape=field_shape, needs_grad=True)
my2 = ti.field(float, shape=field_shape, needs_grad=True)
mx3 = ti.field(float, shape=field_shape, needs_grad=True)
my3 = ti.field(float, shape=field_shape, needs_grad=True)
mx4 = ti.field(float, shape=field_shape, needs_grad=True)
my4 = ti.field(float, shape=field_shape, needs_grad=True)
mxsum = ti.field(float, shape=field_shape, needs_grad=True)
mysum = ti.field(float, shape=field_shape, needs_grad=True)
mx = ti.field(float, shape=field_shape, needs_grad=True)
my = ti.field(float, shape=field_shape, needs_grad=True)
kappa = ti.field(float, shape=field_shape, needs_grad=True) # interface curvature
magnitude = ti.field(float, shape=field_shape, needs_grad=True)
# For visualization
resolution = (800, 400)
rgb_buf = ti.field(dtype=float, shape=(2 * field_shape[0], field_shape[1]))
print(f'>>> A VOF solver written in Taichi; Press q to exit.')
print(f'>>> Grid resolution: {nx} x {ny}, dt = {dt:4.2e}')
print(f'>>> Density ratio: {rho_l / rho_g : 4.2f}, gravity : {gy : 4.2f}, sigma : {sigma[None] : 6.3f}')
print(f'>>> Viscosity ratio: {nu_l / nu_g : 4.2f}')
print(f'>>> Please wait a few seconds to let the kernels compile...')
@ti.func
def find_area(i, j, cx, cy, r):
a = 0.0
xcoord_ct = (i - imin) * dx + dx / 2
ycoord_ct = (j - jmin) * dy + dy / 2
xcoord_lu = xcoord_ct - dx / 2
ycoord_lu = ycoord_ct + dy / 2
xcoord_ld = xcoord_ct - dx / 2
ycoord_ld = ycoord_ct - dy / 2
xcoord_ru = xcoord_ct + dx / 2
ycoord_ru = ycoord_ct + dy / 2
xcoord_rd = xcoord_ct + dx / 2
ycoord_rd = ycoord_ct - dy / 2
dist_ct = ti.sqrt((xcoord_ct - cx) ** 2 + (ycoord_ct - cy) ** 2)
dist_lu = ti.sqrt((xcoord_lu - cx) ** 2 + (ycoord_lu - cy) ** 2)
dist_ld = ti.sqrt((xcoord_ld - cx) ** 2 + (ycoord_ld - cy) ** 2)
dist_ru = ti.sqrt((xcoord_ru - cx) ** 2 + (ycoord_ru - cy) ** 2)
dist_rd = ti.sqrt((xcoord_rd - cx) ** 2 + (ycoord_rd - cy) ** 2)
if dist_lu > r and dist_ld > r and dist_ru > r and dist_rd > r:
a = 1.0
elif dist_lu < r and dist_ld < r and dist_ru < r and dist_rd < r:
a = 0.0
else:
a = 0.5 + 0.5 * (dist_ct - r) / (ti.sqrt(2.0) * dx)
a = var(a, 0, 1)
return a
@ti.kernel
def set_init_F(ic:ti.i32):
# Sets the initial volume fraction
if ic == 1: # Dambreak
x1 = Lx / 3 * 1.0
x2 = Lx / 3 * 2.0
y1 = 0.0
y2 = Ly / 2
r = Ly / 4
for i, j in ti.ndrange(imax + 2, jmax + 2):
if (x[i] >= x1) and (x[i] <= x2) and (y[j] >= y1) and (y[j] <= y2):
Ftarget[i, j] = 1.0
elif ic == 2: # Rising bubble
for i, j in ti.ndrange(imax + 2, jmax + 2):
r = Lx / 12
cx, cy = Lx / 2, Ly / 2
Ftarget[i, j] = find_area(i, j, cx, cy, r)
F[i, j, 0] = 1.0
elif ic == 3: # Liquid drop
for i, j in ti.ndrange(imax + 2, jmax + 2):
r = Lx / 12
cx, cy = Lx / 2, Ly / 2
Ftarget[i, j] = 1.0 - find_area(i, j, cx, cy, r)
@ti.kernel
def set_pixel(x:ti.f32, y:ti.f32, f:ti.template()):
xcord = ti.i32(x * imax)
ycord = ti.i32(y * jmax)
for i, j in ti.ndrange((xcord-2, xcord + 2),(ycord-2, ycord+2) ):
if i >= 0 and j >= 0:
f[i, j] = 1.0
def set_init_by_paint():
gui = ti.GUI("Paint your initial", )
while gui.running:
gui.contour(Ftarget)
gui.get_event()
if gui.is_pressed(ti.GUI.ESCAPE):
gui.running = False
if gui.is_pressed(ti.GUI.LMB):
x, y = gui.get_cursor_pos()
set_pixel(x, y, Ftarget)
gui.show()
@ti.kernel
def set_BC(t:ti.i32):
for i in ti.ndrange(imax + 2):
# bottom: slip
u[i, jmin - 1, t] = u[i, jmin, t]
v[i, jmin, t] = 0
F[i, jmin - 1, 2 * t] = F[i, jmin, 2 * t]
p[i, jmin - 1, t] = p[i, jmin, t]
rho[i, jmin - 1, t] = rho[i, jmin, t]
# top: open
u[i, jmax + 1, t] = u[i, jmax, t]
v[i, jmax + 1, t] = 0 #v[i, jmax, t]
F[i, jmax + 1, 2 * t] = F[i, jmax, 2 * t]
p[i, jmax + 1, t] = p[i, jmax, t]
rho[i, jmax + 1, t] = rho[i, jmax, t]
for j in ti.ndrange(jmax + 2):
# left: slip
u[imin, j, t] = 0
v[imin - 1, j, t] = v[imin, j, t]
F[imin - 1, j, 2 * t] = F[imin, j, 2 * t]
p[imin - 1, j, t] = p[imin, j, t]
rho[imin - 1, j, t] = rho[imin, j, t]
# right: slip
u[imax + 1, j, t] = 0
v[imax + 1, j, t] = v[imax, j, t]
F[imax + 1, j, 2 * t] = F[imax, j, 2 * t]
p[imax + 1, j, t] = p[imax, j, t]
rho[imax + 1, j, t] = rho[imax, j, t]
@ti.func
def var(a, b, c): # Find the median of a,b, and c
center = a + b + c - ti.max(a, b, c) - ti.min(a, b, c)
return center
@ti.kernel
def cal_nu_rho(t:ti.i32):
for i, j in ti.ndrange(field_shape[0], field_shape[1]):
F = var(0.0, 1.0, F[i, j, 2 * t])
rho[i, j, t] = rho_g * (1 - F) + rho_l * F
nu[i, j, t] = nu_l * F + nu_g * (1.0 - F)
@ti.kernel
def advect_upwind(t:ti.i32):
for i, j in ti.ndrange((imin + 1, imax + 1), (jmin, jmax + 1)):
v_here = 0.25 * (v[i - 1, j, t] + v[i - 1, j + 1, t] + v[i, j, t] + v[i, j + 1, t])
dudx = (u[i, j, t] - u[i - 1, j, t]) * dxi if u[i, j, t] > 0 else (u[i + 1, j, t] - u[i, j, t]) * dxi
dudy = (u[i, j, t] - u[i, j - 1, t]) * dyi if v_here > 0 else (u[i, j + 1, t] - u[i, j, t]) * dyi
kappa_ave = (kappa[i, j, t] + kappa[i - 1, j, t]) / 2.0
fx_kappa = - sigma[None] * (F[i, j, 2 * t] - F[i - 1, j, 2 * t]) * kappa_ave / dx # F(2*t) is F at t time step
u_star[i, j, t] = (
u[i, j, t] + dt *
(nu[i, j, t] * (u[i - 1, j, t] - 2 * u[i, j, t] + u[i + 1, j, t]) * dxi**2
+ nu[i, j, t] * (u[i, j - 1, t] - 2 * u[i, j, t] + u[i, j + 1, t]) * dyi**2
- u[i, j, t] * dudx - v_here * dudy
+ gx + fx_kappa * 2 / (rho[i, j, t] + rho[i - 1, j, t]))
)
for i, j in ti.ndrange((imin, imax + 1), (jmin + 1, jmax + 1)):
u_here = 0.25 * (u[i, j - 1, t] + u[i, j, t] + u[i + 1, j - 1, t] + u[i + 1, j, t])
dvdx = (v[i, j, t] - v[i - 1, j, t]) * dxi if u_here > 0 else (v[i + 1, j, t] - v[i, j, t]) * dxi
dvdy = (v[i, j, t] - v[i, j - 1, t]) * dyi if v[i, j, t] > 0 else (v[i, j + 1, t] - v[i, j, t]) * dyi
kappa_ave = (kappa[i, j, t] + kappa[i, j - 1, t]) / 2.0
fy_kappa = - sigma[None] * (F[i, j, 2 * t] - F[i, j - 1, 2 * t]) * kappa_ave / dy
v_star[i, j, t] = (
v[i, j, t] + dt *
(nu[i, j, t] * (v[i - 1, j, t] - 2 * v[i, j, t] + v[i + 1, j, t]) * dxi**2
+ nu[i, j, t] * (v[i, j - 1, t] - 2 * v[i, j, t] + v[i, j + 1, t]) * dyi**2
- u_here * dvdx - v[i, j, t] * dvdy
+ gy + fy_kappa * 2 / (rho[i, j, t] + rho[i, j - 1, t]))
)
@ti.kernel
def cal_velocity_div(t:ti.i32):
for i, j in ti.ndrange((imin, imax+1), (jmin, jmax+1)):
rhs[i, j, t] = rho[i, j, t] / dt * \
((u_star[i + 1, j, t] - u_star[i, j, t]) * dxi +
(v_star[i, j + 1, t] - v_star[i, j, t]) * dyi)
@ti.kernel
def solve_p_jacobi(t:ti.i32):
for i, j in ti.ndrange((imin, imax+1), (jmin, jmax+1)):
ae = dxi ** 2 if i != imax else 0.0
aw = dxi ** 2 if i != imin else 0.0
an = dyi ** 2 if j != jmax else 0.0
a_s = dyi ** 2 if j != jmin else 0.0
ap = - 1.0 * (ae + aw + an + a_s)
p[i, j, t + 1] = (rhs[i, j, t] \
- ae * p_tmp[i + 1, j] \
- aw * p_tmp[i - 1, j] \
- an * p_tmp[i, j + 1] \
- a_s * p_tmp[i, j - 1]\
) / ap
for i, j in p_tmp:
p_tmp[i, j] = p[i, j, t + 1]
@ti.kernel
def solve_p_grad(t:ti.i32):
for i, j in ti.ndrange((imin, imax+1), (jmin, jmax+1)):
ae = dxi ** 2 if i != imax else 0.0
aw = dxi ** 2 if i != imin else 0.0
an = dyi ** 2 if j != jmax else 0.0
a_s = dyi ** 2 if j != jmin else 0.0
ap = - 1.0 * (ae + aw + an + a_s)
rhs_tmp[i, j] = (p.grad[i, j, t + 1] \
- ae * rhs.grad[i + 1, j, t] \
- aw * rhs.grad[i - 1, j, t] \
- an * rhs.grad[i, j + 1, t] \
- a_s * rhs.grad[i, j - 1, t]\
) / ap
for i, j in rhs_tmp:
rhs.grad[i, j, t] = rhs_tmp[i, j]
@ti.ad.grad_replaced
def solve_p_iter(t):
for _ in range(MAX_ITER):
solve_p_jacobi(t)
@ti.ad.grad_for(solve_p_iter)
def solve_p_grad_iter(t):
for _ in range(MAX_ITER):
solve_p_grad(t)
@ti.kernel
def update_uv(t:ti.i32):
for i, j in ti.ndrange((imin + 1, imax + 1), (jmin, jmax + 1)):
r = (rho[i, j, t] + rho[i - 1, j, t]) * 0.5
u[i, j, t + 1] = u_star[i, j, t] \
- dt / r * \
(p[i, j, t + 1] - p[i - 1, j, t + 1]) * dxi
if u[i, j, t + 1] * dt > 0.25 * dx:
print(f'U velocity courant number > 1, u[{i},{j},{t+1}] = {u[i, j, t+1]}')
for i, j in ti.ndrange((imin, imax + 1), (jmin + 1, jmax + 1)):
r = (rho[i, j, t] + rho[i, j - 1, t]) * 0.5
v[i, j, t + 1] = v_star[i, j, t] \
- dt / r \
* (p[i, j, t + 1] - p[i, j - 1, t + 1]) * dyi
if v[i, j, t + 1] * dt > 0.25 * dy:
print(f'V velocity courant number > 1, v[{i},{j},{t+1}] = {v[i,j,t+1]}')
@ti.kernel
def get_normal_young(t:ti.i32):
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
# Points in between the outermost boundaries
mx1[i, j, t] = -1 / (2 * dx) * (F[i + 1, j + 1, 2 * t] + F[i + 1, j, 2 * t] - F[i, j + 1, 2 * t] - F[i, j, 2 * t])
my1[i, j, t] = -1 / (2 * dy) * (F[i + 1, j + 1, 2 * t] - F[i + 1, j, 2 * t] + F[i, j + 1, 2 * t] - F[i, j, 2 * t])
mx2[i, j, t] = -1 / (2 * dx) * (F[i + 1, j, 2 * t] + F[i + 1, j - 1, 2 * t] - F[i, j, 2 * t] - F[i, j - 1, 2 * t])
my2[i, j, t] = -1 / (2 * dy) * (F[i + 1, j, 2 * t] - F[i + 1, j - 1, 2 * t] + F[i, j, 2 * t] - F[i, j - 1, 2 * t])
mx3[i, j, t] = -1 / (2 * dx) * (F[i, j, 2 * t] + F[i, j - 1, 2 * t] - F[i - 1, j, 2 * t] - F[i - 1, j - 1, 2 * t])
my3[i, j, t] = -1 / (2 * dy) * (F[i, j, 2 * t] - F[i, j - 1, 2 * t] + F[i - 1, j, 2 * t] - F[i - 1, j - 1, 2 * t])
mx4[i, j, t] = -1 / (2 * dx) * (F[i, j + 1, 2 * t] + F[i, j, 2 * t] - F[i - 1, j + 1, 2 * t] - F[i - 1, j, 2 * t])
my4[i, j, t] = -1 / (2 * dy) * (F[i, j + 1, 2 * t] - F[i, j, 2 * t] + F[i - 1, j + 1, 2 * t] - F[i - 1, j, 2 * t])
# Summing of mx and my components for normal vector
mxsum[i, j, t] = (mx1[i, j, t] + mx2[i, j, t] + mx3[i, j, t] + mx4[i, j, t]) / 4
mysum[i, j, t] = (my1[i, j, t] + my2[i, j, t] + my3[i, j, t] + my4[i, j, t]) / 4
# Normalizing the normal vector into unit vectors
if abs(mxsum[i, j, t]) < 1e-10 and abs(mysum[i, j, t])< 1e-10:
mx[i, j, t] = mxsum[i, j, t]
my[i, j, t] = mysum[i, j, t]
else:
magnitude[i, j, t] = ti.sqrt(mxsum[i, j, t] * mxsum[i, j, t] + mysum[i, j, t] * mysum[i, j, t])
mx[i, j, t] = mxsum[i, j, t] / magnitude[i, j, t]
my[i, j, t] = mysum[i, j, t] / magnitude[i, j, t]
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
kappa[i, j, t] = -(1 / dx / 2 * (mx[i + 1, j, t] - mx[i - 1, j, t]) + \
1 / dy / 2 * (my[i, j + 1, t] - my[i, j - 1, t]))
def solve_VOF_rudman(t):
if t % 2 == 0:
fct_y_sweep(t, 0, 1e-6)
fct_x_sweep(t, 1, 1e-6)
else:
fct_x_sweep(t, 0, 1e-6)
fct_y_sweep(t, 1, 1e-6)
@ti.kernel
def fct_x_sweep(t:ti.i32, offset:ti.i32, eps:ti.f32):
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
dv = dx * dy - dt * dy * (u[i + 1, j, t + 1] - u[i, j, t + 1])
fl_L = u[i, j, t + 1] * dt * F[i - 1, j, 2 * t + offset] if u[i, j, t + 1] >= 0 else u[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
fr_L = u[i + 1, j, t + 1] * dt * F[i, j, 2 * t + offset] if u[i + 1, j, t + 1] >= 0 else u[i + 1, j, t + 1] * dt * F[i + 1, j, 2 * t + offset]
Ftd_x[i, j, t] = F[i, j, 2 * t + offset] + (fl_L - fr_L) * dy / (dx * dy) * dx * dy / dv
for i, j in ti.ndrange((imin, imax + 2), (jmin, jmax + 1)):
fl_L = u[i, j, t + 1] * dt * F[i - 1, j, 2 * t + offset] if u[i, j, t + 1] >= 0 else u[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
fl_H = u[i, j, t + 1] * dt * F[i - 1, j, 2 * t + offset] if u[i, j, t + 1] <= 0 else u[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
ax[i, j, t] = fl_H - fl_L
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
fmax = ti.max(Ftd_x[i, j, t], Ftd_x[i - 1, j, t], Ftd_x[i + 1, j, t])
fmin = ti.min(Ftd_x[i, j, t], Ftd_x[i - 1, j, t], Ftd_x[i + 1, j, t])
pp = ti.max(0, ax[i, j, t]) - ti.min(0, ax[i + 1, j, t])
qp = (fmax - Ftd_x[i, j, t]) * dx
if pp > eps:
rp_x[i, j, t] = ti.min(1, qp / pp)
else:
rp_x[i, j, t] = 0.0
pm = ti.max(0, ax[i + 1, j, t]) - ti.min(0, ax[i, j, t])
qm = (Ftd_x[i, j, t] - fmin) * dx
if pm > eps:
rm_x[i, j, t] = ti.min(1, qm / pm)
else:
rm_x[i, j, t] = 0.0
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
if ax[i + 1, j, t] >= 0:
cx[i + 1, j, t] = ti.min(rp_x[i + 1, j, t], rm_x[i, j, t])
else:
cx[i + 1, j, t] = ti.min(rp_x[i, j, t], rm_x[i + 1, j, t])
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
dv = dx * dy - dt * dy * (u[i + 1, j, t + 1] - u[i, j, t + 1])
F[i, j, 2 * t + offset + 1] = Ftd_x[i, j, t] - ((ax[i + 1, j, t] * cx[i + 1, j, t] - \
ax[i, j, t] * cx[i, j, t]) / dy) * dx * dy / dv
@ti.kernel
def fct_y_sweep(t:ti.i32, offset:ti.i32, eps:ti.f32):
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
dv = dx * dy - dt * dx * (v[i, j + 1, t + 1] - v[i, j, t + 1])
ft_L = v[i, j + 1, t + 1] * dt * F[i, j, 2 * t + offset] if v[i, j + 1, t + 1] >= 0 else v[i, j + 1, t + 1] * dt * F[i, j + 1, 2 * t + offset]
fb_L = v[i, j, t + 1] * dt * F[i, j - 1, 2 * t + offset] if v[i, j, t + 1] >= 0 else v[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
Ftd_y[i, j, t] = F[i, j, 2 * t + offset] + (fb_L - ft_L) * dy / (dx * dy) * dx * dy / dv
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 2)):
fb_L = v[i, j, t + 1] * dt * F[i, j - 1, 2 * t + offset] if v[i, j, t + 1] >= 0 else v[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
fb_H = v[i, j, t + 1] * dt * F[i, j - 1, 2 * t + offset] if v[i, j, t + 1] <= 0 else v[i, j, t + 1] * dt * F[i, j, 2 * t + offset]
ay[i, j, t] = fb_H - fb_L
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
fmax = ti.max(Ftd_y[i, j, t], Ftd_y[i, j - 1, t], Ftd_y[i, j + 1, t])
fmin = ti.min(Ftd_y[i, j, t], Ftd_y[i, j - 1, t], Ftd_y[i, j + 1, t])
# eps = 1e-4
pp = ti.max(0, ay[i, j, t]) - ti.min(0, ay[i, j + 1, t])
qp = (fmax - Ftd_y[i, j, t]) * dx
if pp > eps:
rp_y[i, j, t] = ti.min(1, qp / pp)
else:
rp_y[i, j, t] = 0.0
pm = ti.max(0, ay[i, j + 1, t]) - ti.min(0, ay[i, j, t])
qm = (Ftd_y[i, j, t] - fmin) * dx
if pm > eps:
rm_y[i, j, t] = ti.min(1, qm / pm)
else:
rm_y[i, j, t] = 0.0
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
if ay[i, j + 1, t] >= 0:
cy[i, j + 1, t] = ti.min(rp_y[i, j + 1, t], rm_y[i, j, t])
else:
cy[i, j + 1, t] = ti.min(rp_y[i, j, t], rm_y[i, j + 1, t])
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
dv = dx * dy - dt * dx * (v[i, j + 1, t + 1] - v[i, j, t + 1])
F[i, j, 2 * t + offset + 1] = Ftd_y[i, j, t] - ((ay[i, j + 1, t] * cy[i, j + 1, t] -\
ay[i, j, t] * cy[i, j, t]) / dy) * dx * dy / dv
@ti.kernel
def post_process_f(t:ti.i32):
for i, j in ti.ndrange((imin, imax+1), (jmin, jmax+1)):
F[i, j, 2 * t + 2] = var(F[i, j, 2 * t + 2], 0, 1)
@ti.ad.no_grad
@ti.kernel
def get_field_to_buf(src:ti.template(), t:ti.i32):
for i, j in Ftarget:
rgb_buf[i, j] = src[i, j, t]
for i, j in Ftarget:
rgb_buf[i + imax + 1, j] = Ftarget[i, j]
@ti.ad.no_grad
@ti.kernel
def get_vnorm_field(t:ti.i32):
for i, j in rgb_buf:
rgb_buf[i, j] = ti.sqrt(u[i, j, t] ** 2 + v[i, j, t] ** 2)
@ti.ad.no_grad
@ti.kernel
def interp_velocity(t:ti.i32):
for i, j in ti.ndrange((imin, imax + 1), (jmin, jmax + 1)):
V[i, j] = ti.Vector([(u[i, j, t] + u[i + 1, j, t])/2, (v[i, j, t] + v[i, j + 1, t])/2])
@ti.kernel
def compute_loss():
for i, j in ti.ndrange(imax + 2, jmax + 2):
loss[None] += ti.abs(Ftarget[i, j] - F[i, j, 2 * MAX_TIME_STEPS - 2])
@ti.kernel
def apply_grad():
for i, j in ti.ndrange((1, imax + 1), (1, jmax + 1)):
if ti.abs(F.grad[i, j, 0]) < 5.:
F[i, j, 0] -= learning_rate * F.grad[i, j, 0]
F[i, j, 0] = var(0, 1, F[i, j, 0])
def forward():
vis_option = 0 # Tag for display
for istep in range(MAX_TIME_STEPS - 1):
for e in gui.get_events(gui.RELEASE):
if e.key == gui.SPACE:
vis_option += 1
elif e.key == 'q':
gui.running = False
# Calculate initial F
cal_nu_rho(istep)
get_normal_young(istep)
# Advection
advect_upwind(istep)
'''
Not necessary; boundary u,v = 0 already, and no update be made on those boundary
For p solving, only those u,v=0 will be used.
'''
# set_BC(istep)
# Calculate the velocity divergence -> rhs
cal_velocity_div(istep)
# Pressure projection
# for iter in range(MAX_ITER):
# solve_p_jacobi(istep)
solve_p_iter(istep)
# copy_p_field(istep, iter) # Don't need copy in kernel replaced version
# Velocity correction
update_uv(istep)
'''
Not necessary. For VOF advection, only u, v = 0 will be used, which are untouched.
And F on the boundary is set at the end of previous step's set_BC
'''
# set_BC(istep + 1)
# Advect the VOF function
solve_VOF_rudman(istep)
post_process_f(istep) # Post-processing violates GDAR, but necessary for stablize.
set_BC(istep + 1)
# Visualization
num_options = 5
plot_contour = ti.ad.no_grad(gui.contour)
plot_vector = ti.ad.no_grad(gui.vector_field)
if (istep % nstep) == 0: # Output data every <nstep> steps
if vis_option % num_options == 0: # Display VOF distribution
print(f'>>> Number of steps:{istep:<5d}, Time:{istep*dt:5.2e} sec. Displaying VOF field.')
get_field_to_buf(F, 2 * (istep + 1))
plot_contour(rgb_buf)
if vis_option % num_options == 1: # Display the u field
print(f'>>> Number of steps:{istep:<5d}, Time:{istep*dt:5.2e} sec. Displaying u velocity.')
get_field_to_buf(u, istep)
plot_contour(rgb_buf)
if vis_option % num_options == 2: # Display the v field
print(f'>>> Number of steps:{istep:<5d}, Time:{istep*dt:5.2e} sec. Displaying v velocity.')
get_field_to_buf(v, istep)
plot_contour(rgb_buf)
if vis_option % num_options == 3: # Display velocity norm
print(f'>>> Number of steps:{istep:<5d}, Time:{istep*dt:5.2e} sec. Displaying velocity norm.')
get_vnorm_field(istep)
plot_contour(rgb_buf)
if vis_option % num_options == 4: # Display velocity vectors
print(f'>>> Number of steps:{istep:<5d}, Time:{istep*dt:5.2e} sec. Displaying velocity vectors.')
interp_velocity(istep)
plot_vector(V, arrow_spacing=2, color=0x000000)
gui.show(f'./output/{opt:03d}-{istep:04d}.png')
# Compute loss as the last step of forward() pass
compute_loss()
# Start main script
istep = 0
nstep = 20 # Interval to update GUI
set_init_F(initial_condition) # Set initial VOF by fixed shape
# set_init_by_paint() # Set initial VOF by user painting
os.makedirs('output', exist_ok=True) # Make dir for output
gui = ti.GUI('VOF Solver', resolution, background_color=0xFFFFFF)
vis_option = 0
for opt in range(OPT_ITER):
print(f'>>> >>> Optimization cycle {opt}')
with ti.ad.Tape(loss):
forward()
print(f'>>> >>> Current total loss is {loss[None]}')
apply_grad() # Apply gradient should be outside the Tape()
print(f'>>> >>> Gradient applied.')