forked from cumulo-autumn/StreamDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
50 lines (43 loc) · 1.74 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from dataclasses import dataclass, field
from typing import List, Literal
import torch
import os
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "False") == "True"
@dataclass
class Config:
"""
The configuration for the API.
"""
####################################################################
# Server
####################################################################
# In most cases, you should leave this as it is.
host: str = "127.0.0.1"
port: int = 9090
workers: int = 1
####################################################################
# Model configuration
####################################################################
mode: Literal["txt2img", "img2img"] = "txt2img"
# SD1.x variant model
model_id_or_path: str = "KBlueLeaf/kohaku-v2.1"
# LoRA dictionary write like field(default_factory=lambda: {'E:/stable-diffusion-webui/models/Lora_1.safetensors' : 1.0 , 'E:/stable-diffusion-webui/models/Lora_2.safetensors' : 0.2})
lora_dict: dict = None
# LCM-LORA model
lcm_lora_id: str = "latent-consistency/lcm-lora-sdv1-5"
# TinyVAE model
vae_id: str = "madebyollin/taesd"
# Device to use
device: torch.device = torch.device("cuda")
# Data type
dtype: torch.dtype = torch.float16
# acceleration
acceleration: Literal["none", "xformers", "tensorrt"] = "xformers"
####################################################################
# Inference configuration
####################################################################
# Number of inference steps
t_index_list: List[int] = field(default_factory=lambda: [0, 16, 32, 45])
# Number of warmup steps
warmup: int = 10
use_safety_checker: bool = SAFETY_CHECKER